Programmable
Logic Controllers

i ControlLogix

PROGRAMMING
CONTROLLOGIX®
PROGRAMMABLE

AUTOMATION
CONTROLLERS

by

Jon Stenerson
Fox Valley Technical College — Appleton, WI

~% DELMAR
t&» CENGAGE Learning"

;% DELMAR
1&» CENGAGE Learning

Programming ControlLogix® Programmable
Automation Controllers

Jon Stenerson

Vice President, Career and Professional
Editorial: Dave Garza

Director of Learning Solutions: Sandy Clark
Acquisitions Editor: Stacy Masucci
Managing Editor: Larry Main

Senior Product Manager: John Fisher
Senior Editorial Assistant: Dawn Daugherty

Vice President, Career and Professional
Marketing: Jennifer McAvey

Marketing Director: Deborah Yarnell
Marketing Manager: Erin Coffin
Marketing Coordinator: Shanna Gibbs
Production Director: Wendy Troeger
Production Manager: Mark Bernard
Art Director: Bethany Casey
Technology Project Manager: Joe Pliss

Production Technology Analyst: Tom Stover

Notice to the Reader

© 2009 Delmar, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored or used in any form or by
any means graphic, electronic, or mechanical, including but not limited to
photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706
For permission to use material from this text or product,
submit all requests online at www.cengage.com/permissions.
Further permissions questions can be emailed to
permissionrequest@cengage.com

Library of Congress Control Number: 2009903376
ISBN-13: 978-1-4354-1947-6
ISBN-10: 1-4354-1947-2

Delmar

5 Maxwell Drive

Clifton Park, NY 12065-2919
USA

Cengage Learning is a leading provider of customized learning solutions with
office locations around the globe, including Singapore, the United Kingdom,
Australia, Mexico, Brazil, and Japan. Locate your local office at: international.
cengage.com/region

Cengage Learning products are represented in Canada by
Nelson Education, Ltd.

To learn more about Delmar, visit www.cengage.com/delmar

Purchase any of our products at your local college store or at our preferred
online store www.ichapters.com

Publisher does not warrant or guarantee any of the products described herein or perform any independent analysis in connection with any of the product informa-
tion contained herein. Publisher does not assume, and expressly disclaims, any obligation to obtain and include information other than that provided to it by the
manufacturer. The reader is expressly warned to consider and adopt all safety precautions that might be indicated by the activities described herein and to avoid
all potential hazards. By following the instructions contained herein, the reader willingly assumes all risks in connection with such instructions. The publisher
makes no representations or warranties of any kind, including but not limited to, the warranties of fitness for particular purpose or merchantability, nor are any
such representations implied with respect to the material set forth herein, and the publisher takes no responsibility with respect to such material. The publisher
shall not be liable for any special, consequential, or exemplary damages resulting, in whole or part, from the readers’ use of, or reliance upon, this material.

Printed in the United States of America

123456712111009

ControlLogix® is a registered trademark of Rockwell Automation Inc.

www.cengage.com/permissions
www.cengage.com/delmar
www.ichapters.com

TABLE OF CONTENTS

Preface v

Acknowledgments vi

CHAPTER 1 Introduction to Control Technology.
CHAPTER 2 Memory and Project Organization., .
CHAPTER 3 Ladder Logic Programming,
CHAPTER 4 Timers and COUNETS.ottt
CHAPTER5 Input/Output Modules and Wiring
CHAPTER 6 Industrial SEnsors i
CHAPTER 7 Math Instructionst e e
CHAPTER 8 Special Instructions.ouuiiii e
CHAPTER9 Structured Text Programming,
CHAPTER 10 Sequential Function Chart (SFC) Programming.
CHAPTER 11 Function Block Diagram Programming.
CHAPTER 12 Industrial Communications ittt
CHAPTER 13 Motion and Velocity Control.
CHAPTER 14 Risk Assessment and Safety i ...
CHAPTER 15 Safety Devices for Risk Reduction.
CHAPTER 16 Installation and Troubleshooting
CHAPTER 17 Lockout/Tagout........... e
APPENDIX A Starting a New Project in ControlLogix.
APPENDIX B Configuring I/O Modules in a Remote Chassis
APPENDIX C The Use of Producer/Consumer Tags,

19

45

69

83
113
151
171
199
219
259
291
315
343
359
387

411

423

431

439

iv TABLE OF CONTENTS

APPENDIX D ControlLogix Messaging.t

APPENDIX E Configuring ControlLogix for Motion

Glossary 493

Index 503

PREFACE

ControlLogix technology has had a large impact on automation. ControlLogix control-
lers can control and integrate complete applications. ControlLogix can be used to act as
a communications gateway to other systems. ControlLogix can eliminate the need for
separate motion controllers in an application. Multiple languages are available for pro-
gramming applications. Having it all in one compatible platform makes it much easier to
integrate and control complex systems. This book is intended to be a practical and under-
standable examination of ControlLogix.

Chapters 1 to 4 concentrate on the fundamentals of ControlLogix hardware, project
organization, tags, and ladder logic programming. The programming chapters have many
examples, questions, and exercises to cement the reader’s understanding of the concepts.
The tutorials on the DVD are helpful on many of the topics covered in the chapters.
Some topics such as the effect of real-world switch states on logic contacts examine if
open [XIO] and examine if closed [XIC]) can be very confusing when learning to pro-
gram. A tutorial is included on the DVD to make this topic clear. There are also tutorials
on types of tags and how to create them and on how to start a project, how to program
counters and timers, and so on.

Chapter 5 examines ControlLogix I/O modules and wiring. Digital and analog mod-
ules are covered. Particular attention is devoted to the concept of sinking and sourcing.
Resolution is also examined for analog modules.

Chapter 6 covers a variety of industrial sensors and their wiring. Sensor types and
their uses are examined. Digital and analog sensors are covered.

Chapter 7 covers math instructions. The common arithmetic instructions are
examined.

Chapter 8 covers special instructions. Instructions such as copy, move, and messag-
ing and diagnostic instructions are covered. In addition proportional, integral, derivative
(PID) control and the PID instruction are included. The chapter also covers sequencers.

Chapters 9 to 11 cover the new programming languages. These new languages are
rapidly gaining popularity. Each language has its strengths and appropriate uses and can
simplify application development and programming. Chapter 9 covers structured text
programming. Chapter 10 covers sequential function chart programming. Chapter 11
covers function block programming.

Chapter 12 examines industrial communications. ControlLogix can act as a commu-
nication gateway to connect many individual controllers and systems into an integrated
system. The chapter covers the fundamentals of communications at all levels in a typical
industrial system. It also covers the most common communications protocols.

Chapter 13 examines the fundamentals of motion control and the use of Control-
Logix to control motion. The chapter first examines the fundamentals of a typical motion
system and then focuses on controlling single and multiaxis systems using ControlLogix.

Vi

PREFACE

Safety is becoming more and more important for machines and systems. Chapters 14
and 15 examine safety. Chapter 14 covers risk assessment and risk reduction. Machines
and systems should be assessed for safety risks. When unacceptable risks are identi-
fied, risk reduction strategies are implemented. Chapter 15 covers safety hardware. The
proper design and inclusion of safety hardware is becoming more important as machines
and systems become more automated. There is a wide variety of safety hardware avail-
able to reduce the risk of injury.

Chapters 16 and 17 focus on installation and maintenance. Chapter 16 covers instal-
lation and troubleshooting of automated systems. Chapter 17 examines the use of lockout/
tagout in industry.

The appendices are designed to show the reader how to do some of the interesting
and unique tasks that ControlLogix is capable of. There should be many aha moments as
this material is learned. The power and simplicity of ControlLogix is amazing. Appendix
A is a step-by-step look at starting new projects using RSLogix 5000. Appendix B is a step-
by-step look at configuring I/O modules in a remote chassis. Appendix C is a step-by-step
look at using producer/consumer tags. Appendix D is a step-by-step look at messaging in
ControlLogix. Appendix E is a step-by-step look at configuring ControlLogix for motion.

SUPPLEMENTS

An Instructor’s Resource CD is available. It contains an Instructor Guide providing an-
swers to the end-of-chapter questions, chapter presentations done in PowerPoint, and
test banks (ISBN 1-4354-1948-0).

ACKNOWLEDGEMENTS

We would like to thank Lawrence Ortner for performing a technical edit on the manu-
script and providing us with detailed feedback, suggestions, and recommendations.

We would like to express appreciation to the following people for their input as
reviewers of this edition:

David Barth, Edison Community College, Piqua, OH
Charles Knox, University of Wisconsin, Platteville, WI
Wade Wittmus, Lakeshore Technical College, Cleveland, WI

CHAPTER

Introduction to
Control Technology

OBJECTIVES

On completion of this chapter, the reader will be able to:
= Describe the basic history of the development of industrial programmable
control.
* Describe the components of a typical PLC system.
= Describe how a PLC system’s components are specified.

* Define terminology such as chassis, module, backplane, CPU, RTB, discrete,
analog, gateway, and so on.

= Describe how a power supply is sized.
* Describe the IEC 61131 standard.

OVERVIEW

PLCs are the backbone of industrial automation. PLCs were designed to be easy for
electricians and maintenance technicians to work with. They have been widely used in
industry since their introduction in the early 1980s. Their capabilities have expanded
tremendously. They have also become easier to program and integrate.

This book will concentrate on ControlLogix™ technology. ControlLogix is exciting
and amazing technology. It is easy to use and yet incredibly powerful and versatile. The
abbreviations CLX and CL will be used as abbreviations for ControlLogix.

2

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

HISTORY OF PLCS

In the old days (only a few decades ago), automation was done with hardwired relays.
Relays, being mechanical, also were prone to failure, which would shut down the line.
Reliability was low and troubleshooting was cumbersome and time consuming. Control
cabinets could contain hundreds of electromechanical relays, timers, and counters. To
change a process, production was halted, the manufacturing line was shut down, and
wiring and relays were modified. Change was avoided whenever possible.

General Motors Corporation (GM) was one of the first to see the need for a pro-
grammable computer that could be used to replace hardwired relay logic and complex
control cabinets. GM thought that the program in a programmable control device could
be modified to change the way a system operated. GM also needed a programmable
device that electricians could program, wire devices to, troubleshoot, and use without
learning a computer language.

The first PLCs were simple devices that were designed to replace hardwired relays.
The language that was developed for PLCs was called ladder logic. It was a very graphical
language and looked a lot like the electrical diagrams that electricians were already very
familiar with. PLC input and output modules were designed so that electricians could
easily connect inputs and outputs. Imagine an automated automobile line before PLCs.
There were many huge electrical control cabinets each filled with miles of wire and
relays, motor controls, and so on. The logic to run the system was dependent on how all
of the hardware relays and devices were wired. If the assembly process had to be changed,
the whole system would be shut down and wiring would have to be changed. This was
tremendously costly and made changes expensive and undesirable. If something went
wrong, the system would have to be turned off and technicians would have to trouble-
shoot all of the hardwired logic and devices. Again, very costly and time consuming. PLCs
made it possible to wire devices one time and just modify the program to change how the
system operated. It also eliminated the need for hardware such as logic relays, hardware
timing, counting relays, and so on. The PLC program is used to create the logic, timing,
counting, and so on.

Figure 1-1 shows a ControlLogix PLC in a control cabinet. To accomplish the same
application with hardwired relays, this cabinet would have been huge before PLCs were
invented. Remember also that with the PLC, no wiring has to be changed to change the
operation of the system. The programmer simply changes the program.

PLCs enable companies to automate processes rapidly and at low cost. Automat-
ing a process improves productivity and quality and dramatically reduces scrap and
rework. PLCs can enable a manufacturing process to be flexible so processes can
produce products to the individual specifications that each customer has ordered.
PLCs also enable very rapid, even instantaneous, product changeover through pro-
gram logic.

Dramatic advances have been made in PLC capabilities. As PLCs gained more capa-
bility and began offering more alternative languages for programming, the term Program-
mable Automation Controllers (PACs) has begun to be used to describe the newer, more

CHAPTER 1—INTRODUCTION TO CONTROL TECHNOLOGY 3

T TRt R VLV V.

Figure 1-1 CLX control cabinet. The CLX PLC is at the top of the cabinet.

powerful PLCs. ControlLogix (CLX or CL) PLCs fit this new term. While the acronym
PAC certainly applies to ControlLogix, out of convention the acronym PLC will be
used in this text. Rockwell Automation has a whole family of Logix products available.
Figure 1-2 shows some of the Logix family of controllers.

ControlLogix

High-performance, multi-processing

control platform
(O

PowerFlex 700S with DriveLogix [T 7 9
An integrated drives and control
solution

SoftLogix5800
High-performance,
PC-based control

FlexLogix
Small to mid-sized
control applications
using FLEX /O

CompactLogix
Comapct I/0 and control for
smaller applications

Figure 1-2 Examples of Logix products.

4

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

What is a PLC?

There are many similarities between a personal computer and a PLC. Note that both have
inputs. A computer has a keyboard and a mouse for inputs. The computer can also access
the hard drive, CD, DVD, and Internet to get input. A PL.C can get input from sensors
and other devices such as robots, other controllers, and so on. Computers and PLCs have
a central processing unit (CPU) and memory. The CPU runs the user program, evaluates
the inputs, and generates outputs. Computers and PLCs both have outputs. A computer
can output to a printer, send email out over the Internet, or store a file on a drive. A PL.C
has outputs such as motors, drives, lights, and so on.

Figure 1-3 shows a simplified overview of a PLC. Switches S1 and S2 provide on or
off input signals to the input module of the PLC. The CPU evaluates the logic on the
basis of the states of the input/output (I/O) and then changes the states of outputs. The
output module turns on outputs on the basis of what the CPU has written to output
memory.

Input Output
o Module PLC CPU Module
i @ Irput 1 Output 1 @
D lrput 2 Output 2 &—+——
S2 @ @
D @
@ PLC Logic | ’ @
| Power g g
I Supply | o p
—@Cornmon et —o

Figure 1-3 Simplified view of a PLC.

Figure 1-4 shows a ControlLogix PLC. The main components have been identified.
The power supply is chosen to be large enough to supply current required by the CPU
and the modules. The power supply is attached to the left side of the chassis. The chassis
size is chosen to hold the number of required modules and the CPU. This system has
two CPUs. The first slot in a chassis is slot 0. The CPU is normally installed in slot 0.
ControlLogix PLCs can have more than one CPU in a chassis. The second CPU in this
example is in slot 1. Slots 3 and 4 have digital I/O modules in this system. Slot 4 has a
combination analog I/O module. Slot 5 has a slot filler installed. Slot fillers are available
to fill slots that do not have a module installed. Slot 6 has a SERCOS motion control
module installed. Slot 7 has a Ethernet bridge module. Slot 9 has a DeviceNet commu-
nications module and slot 9 has a Data Highway Plus (DH+) module installed.

PLCs are available with various sizes of memory. CLX CPUs are available with
between 750 Kbytes and 16,384 Kbytes of memory.

CHAPTER 1—INTRODUCTION TO CONTROL TECHNOLOGY 5

Power Supply CPUs Analog 1/0O Slot Filler

|

Digital I/0 Communication Modules

Figure 1-4 Components of a typical PLC.

Some PLC CPU modules allow the user to add additional nonvolatile memory to the
CPU module.

Modular PLCs

Almost all PLCs are modular. They allow the user to purchase and install modules
to accomplish a task. This enables a user to choose the input and output modules
needed for the particular application. A modular PLC begins with a chassis (see
Figure 1-5).

Chassis

Chassis, also called racks, are available in various sizes. The user decides which modules
will be required for inputs and outputs, communications, and other special purposes such
as motion control. The user chooses the size chassis that is needed to hold the number
of modules required for the application. Racks have slots, which locate and power the
modules. The slots connect the module to the backplane. The backplane passes power to

6

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

operate modules and also enables the modules to communicate with the CPU and other
modules.

An T/O rack, or chassis, is a housing in which modules are installed (see Figure 1-5).
Some applications require more modules than will fit in one rack. Some applications may
have some I/O that is located a long distance from the PLC. Remote chassis can be used
in these cases.

Figure 1-5 A chassis for a CLX system. Note that the power supply would be attached to
the left side of the chassis and modules plug into slots. This chassis has ten slots. Chassis are
available in different sizes.

Power Supply

When users specify a PLC for a project, they choose the modules that will be needed.
They then choose a chassis that will be large enough to hold all of the modules. Then they
add up the power requirements for the CPU and all of the modules. This enables them to
choose a power supply that is large enough to power all of the modules. The power sup-
ply attaches to the left of the chassis in a CLX system (see Figure 1-6).

Central Processing Unit

The central processing unit (CPU) is the brain of the PLC. It can also be called the con-
troller. The CLX controller takes input information, examines the logic in the program in
the CPU and then controls the states of outputs.

CHAPTER 1—INTRODUCTION TO CONTROL TECHNOLOGY 7

Figure 1-6 A ControlLogix power supply. (Courtesy of Rockwell Automation, Inc.)

The CPU is really just a microcomputer. It has a microprocessor just like a personal
computer. The main difference between the PLLC CPU and a personal computer is the
program. Until recently the language that PLCs were programmed in was a graphical
language called ladder logic. Ladder logic was designed to look like a normal industrial
electrical print and be easy for electricians and technicians to understand and trouble-
shoot. There are additional languages that can be used in many PLCs today.

Figure 1-7 shows a ControlLogix CPU. There are three positions that the key switch
can be in: RUN, REM, and PROG. If the key is in the RUN position, the CPU will run
the program in memory. If the switch is in the REM position, it is in the remote mode.
Remote mode means that the computer that is attached to the CPU can control which
mode the CPU is in. When writing and testing programs, the REM position is the most
convenient. The PROG position stands for program mode. The computer cannot switch
modes if the switch is in RUN or PROG modes. The CLX CPU has an RS232 serial
programming port, although, since modern programs are quite large, Ethernet is more
commonly used.

Figure 1-8 shows the status LEDs on the CPU. These LEDs are either green or red
and may be flashing or not flashing. The RUN status LED indicates when the CPU is
in the RUN mode. The FORCE LED indicates when forces are in effect that override
logic. The FLT LED indicates when there is a fault. The I/O LED indicates the status of
communications to local and remote I/O modules. The BAT is the battery indicator. The
RS232 status LED indicates the status of the RS232 communication port. Figure 1-9
is a table that explains the LED status indicators. This information is very useful when
something goes wrong.

8 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

RUN REM PROG

Figure 1-7 A ControlLogix CPU.

*nEEm N0

FORCH BN EE RSiD?

ATHE E CK

RUN REM PROG

Figure 1-8 CPU LEDs. (Courtesy of Rockwell Automation, Inc.)

CHAPTER 1—INTRODUCTION TO CONTROL TECHNOLOGY 9

LED Color Description

Run Off The controller is in the program or test mode.
Solid green The controller is in the run mode.

1/0 Off There are no devices in the 1/O configuration.

Or the controller does not contain a project (memory is empty).

Solid green The controller is communicating with all the 1/O devices in the
configuration.

Flashing green One or more of the devices in the I/O configuration are not

responding.
Flashing red The chassis is defective.
Force Off No tags contain I/O force values.

1/0 forces are disabled (inactive).

Solid amber 1/0 forces are enabled (active).
I/O force values may or may not exist.

Flashing amber One or more input or output addresses have been forced to an on or
off state, but the forces have not been enabled.

RS232 Off There is no activity.

Solid green Data is being transmitted or received.

Figure 1-9 LED indicators for a CLX processor.

Battery Backup

The CPU has a battery that keeps the memory refreshed when the power to the PLC
is off. Figure 1-10 shows a CPU and the battery location. The battery provides backup
power for the CMOS RAM. Note also the serial and model number information on the
module. When a battery is replaced, the date should be noted on the tag so that it is
replaced before the battery fails. A larger, longer-lasting external battery pack is also
available for 5555 ControlLogix processors. The 556x processors do not need the larger
battery since their battery is used to copy the contents of RAM to internal flash memory
only on power loss.

Figure 1-11 shows that there are really two CPUs: the Logix CPU and the backplane
CPU. The ControlLogix CPU executes application code and messages. The backplane
CPU communicates with I/O and sends and receives data from the backplane. The back-
plane CPU operates independently from the ControlLogix CPU, so it sends and receives
I/O information asynchronous to program execution. Note that this really adds to the
power and versatility of CLX controllers. A Logix chassis can be used to control I/O and
also act as a communications bridge and gateway.

10 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Figure 1-10 Battery location and replacement for a CLX processor. (Courtesy of Rockwell

Automation, Inc.)

Logix CPU and Backplane CPU

Top No Connection
Middle Black Lead (-)

Bottom Redlead (+)

Logic and Data Memory

[Program Source Code [

I Tag Data] I-[t:'Fg'li,lx

‘ RSLinx Tag Group Lists [

1/0 Memory

1/0 Data

I/0 Force Tables

Message Buffers

|
|
|
|

Produced/consumed Tags

Backplane
CPU

Figure 1-11 This figure illustrates the two CPUs: Logix and backplane. (Courtesy of Rockwell

Automation, Inc.)

Memory Cards

Some CLX CPUs have memory boards. Memory is available for some CPUs up to
7.5 megabytes (MB). Some controllers support a removable CompactFlash card for
nonvolatile memory. Figure 1-12 shows the location of the specific information about the

controller and the memory board on a CLX processor.

CHAPTER 1—INTRODUCTION TO CONTROL TECHNOLOGY 1

Allen-Bradley

ControlLogix
CAT. NO./SERIES : -
\‘I'ISG-M... board, if one is installed.

Catalog number of the memory

(Allen-Bradley
ControlLogix Catalog number of the
CAT. NO./SERIES controller,

QTSG-L...

Figure 1-12 Location of catalog numbers for memory and processor. (Courtesy of Rockwell
Automation, Inc.)

Input to a PLC

Input modules provide the link between the outside world and the PL.C’s CPU. The main
function of PLC input modules is to take information from the real world and convert it
to signals that the PLC CPU can work with. Input modules also protect the CPU from
the outside world.

Figure 1-13 shows an example of a sensor connected to an input on an input module.
Note the power supply in the circuit. If the sensor is true (on), 24 volts would be seen at
input 1. The input module will convert the 24 volts to a 5-volt signal that the CPU will
see as a 1 (true). Many input modules run diagnostics to detect broken input wiring.
Note also that the input module does not supply the power for the devices. The sensor is
powered by an external power supply.

[Sinking
Input
Module
2 Input
+J_ Power
-'[Supply
Common

Figure 1-13 Sensor connected to an input.

12 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Figure 1-14 shows how the electric signal is converted to its binary equivalent in
memory. The input module converts the electric signal to a binary 1 or 0 and stores it in
memory that represents that input’s state in memory.

Input Module PLC Input Memory
Sensor Input 0
=i % @ ‘f

5 2 0000000 000000000000000 0000000001

®

® o

% o

° o

% o

% 9

@

Figure 1-14 How a real-world input’s state is stored in memory. The sensor is sensing an
object so this sensor’s output is true.

A generic CL I/O module is shown in Figure 1-15. The module is installed in the chas-
sis. The backplane connector is used to power the module and also for communications with

ControlLogix I/0 Module

L
/ 7 DC OUTPUT .
D |] Indicators — Sanzusnﬁ <—-Lock|ngtab
. 8
- Removable Terminal Block
-] m— N, = m
_ re e I =R el
7 (@ @ @ B
o o I g
I)?uz':n Connector pins ® O u @ H
[Quides ® ©||f—Sosfor [H ol
ControlBus - keying the ||| |
Connector ® O [f—-rmn I ® I
e o | ©’
e O @
O : le e =Rl
N i
S e O
\ \ \/\ rrl—r-n
R B O oo

Figure 1-15 Generic CL I/O module. (Courtesy of Rockwell Automation, Inc.)

CHAPTER 1—INTRODUCTION TO CONTROL TECHNOLOGY 13

the backplane and CPU. There is a Removable Terminal Block (RTB) that is used to con-
nect the wiring. If a module needs to be replaced, the RTB is removed without any wiring
being removed. The new module is inserted into the chassis and the RTB is reconnected.

Discrete Input Modules

-©) ACINPUT

ST01234567 ¢
ITo1234567 K|

8

DIAGNOSTIC

Figure 1-16 Input status LEDs on a module. The Status LEDs are labeled ST and the Fault
LEDs are labeled FLT. (Courtesy of Rockwell Automation, Inc.)

Discrete input modules are available for various ranges of AC and DC voltages. Discrete
modules are available with various numbers of inputs also. Modules are commonly
available with 8, 16, and 32 inputs.

The ControlLogix architecture uses producer/consumer technology, which allows
input information and output status to be shared among multiple ControlLogix control-
lers (see Figure 1-17). This is one of the capabilities that makes CLX so powerful. Input
modules are covered in detail in Chapter 5.

Producer/Consumer 1/0 Model

Commonly Shared Data

Figure 1-17 Producer/consumer model for data sharing among multiple CLX controllers.
(Courtesy of Rockwell Automation, Inc.)

14 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Analog Input Modules

Modules are also available that can input an analog signal. Modules are commonly
available to take input signals of 0-10 VDC, —10-+10 VDC, and 4-20 milliamperes
(mA). These are useful for taking the input from analog input devices. A temperature-
measuring device such as a thermocouple with a converter is one example. For example,
low voltage would represent a low temperature; 10 VDC might represent the maximum
temperature. Many industrial measurement devices produce a current signal such as
4-20 mA, a flow measurement device for example. For this example 4 mA might be no
flow and 20 mA would be maximum flow. Any value between 4 and 20 would represent a
different flow rate. Analog modules are covered in detail in Chapter 5.

Outputs from PLCs

Discrete Output Modules

Discrete means that the output module only outputs on- or off-type signals. This is also
sometimes called a digital signal. A digital output could be used to turn a valve or a motor
on or off. It could be used to turn lights on or off or send an on/off signal to a robot or
other equipment.

The output for the module is represented by a 1 or a 0 in memory. Figure 1-18 shows
an output connected to output 0 of an output module. The output module converts a bi-
nary 1 or 0 that represents the output’s state in memory to an electric signal that controls
the actual state of the real-world output.

PLC Output Memory Output Module
Output0
| @’@\ On
00 0000000000000000000000 00000001 @ g
@ @
¢ o
2 %
@ @
@ @
@

Figure 1-18 How an output state in memory is converted to an electric signal to control an
output.

Figure 1-19 shows a generic output module. The module is installed in the chassis.
The backplane connector is used to power the module and also for communications with
the backplane and CPU. There is a RTB that is used to connect the wiring. If a module
needs to be replaced, the RTB is removed without any wiring being removed. The new
module is inserted into the chassis and the RTB is reconnected.

CHAPTER 1—INTRODUCTION TO CONTROL TECHNOLOGY 15

ControlLogix 1/0 Module

—
7 (DC OUTPUT
g
) [I Indicators —gf st 134541 3 ~— Locking tab
- 8
- Removable Terminal Block
- —— N C m
_ Lre e 1D @]
] @ e D B
o o I g
L‘L‘:tzr"n Connector pins o © u 5 |
I: guides @® @ | f—Sasfor |H Bl
CorttrolBus - keying the ||| |
Connector ® O l——rmn | ©
o o | @
o o ®
O : le e D B
— o O
\ \ C \/\ rr‘ﬁ"l
= | B O woon

Figure 1-19 Output module. (Courtesy of Rockwell Automation, Inc.)

Output modules are available for AC and DC and various ranges of voltages. Mod-
ules are commonly available with 8, 16, and 32 inputs. Output modules are available with
relay or solid-state outputs. Solid-state outputs are the most common.

Status LEDs

Figure 1-20 shows several different output module status LEDs. Status LEDs are very
useful for troubleshooting. Note that the diagnostic modules provide I/O status LEDs for
each I/O point and also fault information for each I/O point. Note also that the electroni-
cally fused module (lower left) has status information for the state of each I/O point and a
fuse status indicator for each I/O point.

Analog Output Modules

Modules are also available that can output an analog signal. Modules are commonly avail-
able to output 0-10 VDC, —10-+10 VDC, and 4-20 mA. These are useful for controlling
analog output devices. A motor drive is one example. A drive that is capable of clockwise
and counterclockwise rotation at various velocities might require a —10—+10-VDC sig-
nal from a PLC to control direction and velocity. If the output is negative, the drive may
move in a counterclockwise direction. If the output is positive, the drive may move in a
clockwise direction. The magnitude of the signal would control the velocity. For example,
low voltage would be slow speed; 10 VDC would represent the maximum speed.

16

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

1756-0A8D

1756-0A8E

(> AC ouTPUT

1756-0B16D

ST01234567¢

FL701234567K

o1 _Jos

(> ACOUTPUT

ST012345667 ¢
FUSE01234567 K

ol Jo

(3> DCOUTPUT

ST01234567
FT01234567
ST89VNRBUIL
T 89 VNRBUIL

8

d

DIAGNOSTKC ELECTRONICALLY FUSED DIAGNOSTIC
1756-0B16E 1756-0B16l 1756-0B32

(> DCOUTPUT (3> DC OUTPUT (> DC OUTPUT

ST01234567 8 8 sto1234567 O

FUSE N OB 510123455705 smg“;“goB

STeonNRBUE " sTgonneBusk 57&;%35%%% K

FUSE B g22222233 8

45678001
ELECTRONICALLY FUSED

Figure 1-20 Status LEDs on several models of output modules. (Courtesy of Rockwell
Automation, Inc.)

Many process devices require a current signal such as 4-20 mA. A valve to control
the rate of flow would be an example. For this example, 4 mA would be no flow (valve
completely shut) and 20 mA would make the valve wide open. Any value between 4 and
20 would set a different flow rate. Analog modules are covered in detail in Chapter 5.

Programming

The most common programming language for PLCs is ladder logic. Figure 1-1 shows a
simple example of ladder logic. It is not important to understand the logic at this point.
There is a vertical line on the left and one on the right of the ladder logic. These are
sometimes called power rails. The horizontal lines represent rungs of logic. The symbols
on the left of the rungs (contacts) represent input states or conditions. The symbol on
the right of the rung (coil) represents an output. If the conditions on a rung are true, the
output is turned on.

Ladder logic is still the most widely used PLC language. Recently other languages
have been rapidly increasing in use. Programs can be written online or offline. Program-
ming software also has error checking to make sure that the program addressing matches
the available I/0 as well as syntax errors. Programming software also provides many trou-
bleshooting tools to help find and correct errors in program logic.

Figure 1-21 shows an example of ladder logic. The elements on the left are called
contacts. Contacts represent input conditions. The element on the right named Out_1 is
called a coil. Coils represent outputs. Ladder logic will be covered in Chapter 3.

CHAPTER 1—INTRODUCTION TO CONTROL TECHNOLOGY 17

Inp_3 Inp_1 Inp_2 Out_1

Figure 1-21 Simple example of ladder logic.

International Standard IEC 61131

IEC 61131-3 is an international standard for PLCs. This standard is actually a collection
of standards for PLCs and their associated peripherals. The standard consists of eight
parts: Part 1: General information, Part 2: Equipment requirements and tests, Part 3:
Programming languages, Part 4: User guidelines, Part 5: Communications, Part 6: Re-
served for future use, Part 7: Fuzzy control programming, and Part 8: Guidelines for the
application and implementation of programming languages.

Part 3 (IEC 61131-3) is the most important to the PLC programmer. It specifies the
following languages: ladder diagram, instruction list, function block diagram, structured
text, and sequential function chart. CLX has four of the five languages implemented.
The instruction list was not implemented. The instruction list is very similar to the lan-
guage that is used to program the microprocessor. It is very detailed in nature and not
friendly to people who have not studied microprocessor programming. The standard
is intended to make the languages from different manufacturers more standard. It will
never mean that programming software from one manufacturer can be used to program
a PLC from another manufacturer. But the logic should be very similar. The standard es-
sentially establishes base languages and elements for each language. Manufacturers must
be compatible on these items to be IEC 61131-3 compliant. Manufacturers are free to
add additional elements to the languages. Ladder logic, structured text, sequential func-
tion chart, and function block languages will be covered in later chapters.

ControlLogix is incredibly powerful and versatile. A CL system can be used for con-
trol. It can also be used as just a communications gateway. CL can be used to develop
complex networked systems. CL can also handle complex integrated multiaxes motion
control. Figure 1-22 shows an overview of a more complex CL system including motion
(SERCOS) and communications possibilities. SERCOS is a communications standard
commonly used for controlling servos. Note the various communications protocols that
can be used.

18 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

ControlLogix System Overview

1756 1/0 Modules in the

g:n':e f&m i;as:hﬁ Remote I/0 Modules
WROROHI Lo Communication Interface)
Modules in the Same %) > Drives
LI Chassis as the
—=1=]| |ControlLogix Controller
E% oo EtherNet/IPLink
' ControlNet Link
EtherNet/IP Link DeviceNet Link
ControlNet Link SERCUS Link Universal remote 1/0 Link
Computers SERCOS Drives

Other Controllers

Figure 1-22 CL system overview. (Courtesy of Rockwell Automation, Inc.)

SUMMARY

PLCs are used in any imaginable application. They are used in manufacturing systems
of course but also in water treatment facilities, sewer treatment plants, bridge control,
power generation and transmission, food production, prison control systems, building
environmental control and security, and many others. They are used by inventors and
entrepreneurs to start new companies producing newer and faster machines to do almost
any task.

—

PLCs were originally intended to replace

Name the main components that are found in a basic CLX system.
What happens to the memory of a CLX controller when the power is shut off?
How is a power supply chosen for a system?

What does discrete I/O mean?

What is an RTB?

What is the difference between discrete and analog?

What does producer/consumer technology enable CLX to do?
What does a contact typically represent?

What does a coil typically represent?

. What is the most common PLC programming language?

. Whatis IEC 61131-3?

. What four languages can be used to program CLX controllers?

. What is SERCOS, and what is it typically used for?

© PN Uk W

—
B~ WM = O

CHAPTER

Memory and Project
Organization

OBJECTIVES
On completion of this chapter, the reader will be able to:

= Describe project organization in CLX.

Explain the relationship between tasks, programs, and routines.

List the types of task execution that are possible.

Describe the base types of tags.

Create base-, alias-, array-, and User-Defined-type tags.

Choose the appropriate type of task execution and configure tasks.

INTRODUCTION

ControlLogix was designed to give the programmer a great deal of flexibility in how an
application is organized. CLX allows the programmer to keep things simple and program
everything as one task or divide it into multiple tasks for efficient operation, clarity, and
ease of understanding. There is tremendous flexibility and capability for the program-
mer. It is very important to have a good understanding of CLX project organization and
terminology.

20

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

CONTROLLOGIX PROJECTS

Tasks

Typically in most PLCs we would have a program and maybe some subprograms to
control an application. ControlLogix has a different organizational model. The overall
application you develop in CLX is called a project. A project contains all of an applica-
tion’s elements and is broken into tasks, programs, and routines.

A CLX project can have one or more tasks. Tasks can be used to divide an application
(project) into logical parts. Tasks have a couple of important functions. A task is used to
schedule the execution of programs in the task. A CLX project can have up to 32 tasks.
A task’s execution can be configured to be executed continuously, periodically, or on the
basis of an event (see Figure 2-1). When the programmer creates a new project, a main
task, which is continuous, is created. Continuous tasks are sometimes called the back-
ground task since they only execute in leftover time. The name main task is somewhat
misleading. It is actually the lowest priority task. It can be renamed.

Task Execution ‘ Function
Continuous Operates continuously (except while other tasks are executing)
Periodic Executes at specific intervals.

The rate of execution can be set between 1 ms to 2000 seconds.
The default execution time is 10 ms.

Event-based Executes on the basis of an event

Figure 2-1 Task execution types.

A continuous task can be thought of as executing continuously. As only one task can
execute at a time, a continuous task executes anytime a periodic or event-based task
is not executing. Periodic tasks are set up to operate one time through at specified in-
tervals. Periodic tasks interrupt the operation of the continuous task to operate. When
the periodic task is done, the task is executed one more time. The rate for a periodic
task can be set between 0.1 ms and 2000 seconds. The default rate for a periodic task
is 10 ms.

Figure 2-2 shows a timing diagram for three tasks. The main task is continuous.
It is shown in gray. It is always operating if the other two are not. Task 2 (white) is a
periodic task. It executes at specific time intervals. The main task (continuous) stops
executing and the second task (periodic) executes. The third task (black) is event based.
It executes when the specified event occurs. Remember that only one task can execute
at a time.

CHAPTER 2—MEMORY AND PROJECT ORGANIZATION 21

[] Main Task - Continuous

]
TN 7

Brask3 [OTask 2

Figure 2-2 Continuous, periodic, and event-based task execution.

Application Example

Imagine a machine that produces packaging material. The machine requires several ser-
vosystems for motion, velocity, flow control, temperature control, and many quality con-
trol checks as the packaging material is made. This machine application might be broken
into several tasks for a CLX project. The main task might be used for overall machine
control functions. The company also collects machine production data and displays it for
operators on human-machine interface (HMI) monitors. The main task is a continuous
task. In this example the servo motion and process control needs to be monitored for
safety and for adequate control. This needs to be done in a periodic task. Another opera-
tion on this machine is making a perforation. This must occur on the basis of a registra-
tion mark on the packaging material. This task would require event-based execution. In
this example the project developer might decide to divide the overall application (CLX
project) into three tasks, as each has different requirements. Figure 2-3 shows what the
project organization might look like for this application. This application (project) was
broken into three tasks. One task is continuous, one needs to execute about every 5 ms
(periodic), and one is based on the registration mark on the packaging material (event
based). Tasks will be covered in greater detail later in the chapter.

Programs

As Figure 2-3 shows, a project consists of all of the things required to control an applica-
tion. A separate task can be developed to control each logical portion of an application.
ControlLogix also enables the programmer to break each task into one or more programs.
Each task can have up to 100 programs. In Figure 2-3 the task named Main Task has one
program named Control: The Task named Servo and PID has two programs: Servo and
Temp. The third Task named Registration has one program. If there is more than one pro-
gram, the programs will execute in the order they are shown in the controller organizer.

Routines

Each program can also have one or more routines. The application’s logic is created in the
routines. These are normally organized into a main routine and additional subroutines.
In most PLCs the logic is written in programs and subprograms. In CLX they are called
routines.

22 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

ControlLogix
Project
Paper Machine
: h 4 . . Y) - \ 4
Main Task ‘Servo and PID Task Registration Task

Continuous Periodic Event-Based

h 4 Y h 4 h 4
' trol | | Program " Jram Temp Y ysira

Y v v \ 4

v v v v

A A

Routne 3 Routine 3

Figure 2-3 ControlLogix project organization with the application organized into tasks,
programs, and routines.

Project

Controller tags |

it e /0 data | B-&

Lt Controller Tags
| System-shared data J - [23 Controller Fault Handler

(23 Power-Up Handler
=153 Tasks

=48 MainTask

(=l e. MainProgram
_ Program Tags

S— 1 MainRoutine
ﬂog:al d;:f A~ 3 Unscheduled Programs
£23 Motion Groups

(3 Trends
5-&3 Data Types
- [user-Defined
G4l Strings
@ Ci@ Predefined

Task

Program

Other routines
Main routine

Figure 2-4 Project organization. (Courtesy of Rockwell Automation, Inc.)

CHAPTER 2—MEMORY AND PROJECT ORGANIZATION 23

Figure 2-4 shows a different representation of project organization. A ControlLogix
project does not have to be complex. As shown in Figure 2-4, a simple project might just
have one task, one program, and one routine. There is one task named MainTask, one
program named MainProgram, and one routine named MainRoutine.

LET'S REVIEW

Project

Task

Program

Routine

A project is the overall complete application. It is the file that stores the logic, configura-
tion, data, and documentation for a controller.

A task is a scheduling mechanism for executing programs. An application can be broken
into multiple logical tasks. A task enables the programmer to schedule and prioritize one
or more programs that execute on the basis of the application requirements.

When a new project is started, a continuous task is created by default. It is precon-
figured as a continuous task. The programmer can add additional periodic or event tasks,
as needed. Once a task is triggered, every program assigned (scheduled) to the task will
execute in the order in which it is displayed in the controller organizer.

In CLX a program has one or more routines. The routines contain the logic in a CLX
project. A program could be defined as a set of related routines and tags. Each program
contains program tags, a main executable routine, other routines, and an optional fault
routine. Programs are contained in a task: When the program’s task is triggered, the
scheduled programs within the task will execute from the first to the last one.

A routine is a set of logic instructions written in one programming language, such as
ladder logic. A routine in CLX is similar to a program or subprogram in most PLCs.
Routines are where the programmer writes the executable code for the project.

The main routine is the first routine to execute when its program is triggered to run.
Jump-to-subroutine (JSR) instructions are used to execute other routines. A program fault
routine can also be developed. If any of the routines in the associated program produce a
major fault, the controller executes the program fault routine, if one was developed.

TAG ADDRESSING IN CONTROLLOGIX

In most PLCs the programmer has to use very specific addressing to specify I/O ad-
dresses, bits, variables, timers, counters, and so on. Most PLCs use a physical address for
every tag. For example, a SLC 500 PLC would use an address like N7:5 to reference an

24

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

integer in memory. Addresses typically follow a fixed, numeric format that depends on
the type of data, such as B3:6/0, N7:2, and FS:5.

In these PLCs the programmer can use symbolic names to represent the
actual address. For example, the programmer might use a symbolic name like Alarm_
Light to represent an actual output (0:5/3) in a ladder diagram. The PLC actually
uses the 0:5/3 address. The symbolic name for it is not even located in PLC mem-
ory. It only appears in the program on the computer. It is only for the programmer’s
use.

In CLX, tags are used to address I/O, bits, variables, timers, counters, and so on.
A tag is a user-friendly name for a memory location. For example, we might store a tem-
perature integer value in memory. Temp would be a good name for the tag to hold this
data. The processor uses the tag name to address the data.

ControlLogix uses the tag name and doesn’t need to cross-reference a physical
address. The tag name identifies the data. This enables a programmer to document a pro-
gram with tag names that clearly represent the application. In CLX the maximum length
for a tag name is 40 characters.

Tag names may use alphabetic characters (A-Z or a—z), numeric characters (0-9),
and underscores (_). Tag names must start with either an alphabetic character or an un-
derscore. Tags are not case sensitive (A is the same as a). It is wise to use mixed case tag
names (upper- and lowercase characters) and underscores because mixed-case tag names
are easier to read. Look at the examples in Figure 2-5.

Preferred Tag Name ‘ More Difficult to Read
Temp_1 TEMP_1
Temp_1 TEMP_1

temp_1

Figure 2-5 The use of upper- and lowercase letters and underscores can make tag names
easier to read.

Organizing Tags

RSLogix 5000 organizes tags in alphabetical order. Tag names can be chosen so
they keep similar data together. For example, if we are interested in tags related to
Machine_1 or tags relating to temperature, we can name them so that they are listed
together.

The first column in the table in Figure 2-6 shows an example of naming tags so that
similar tags are grouped together. All the tags related to Machine 1 appear together as do
the Temp tags. In the second column similar tags are not grouped together because of
their names. They are separated from each other. One would have to go through the list
to find each tag that related to Machine 1 or Temp.

CHAPTER 2—MEMORY AND PROJECT ORGANIZATION 25

Logical Organization No Name Organization

Tag Name Tag Name

Machine_1_Cyc

Machine_1_Hours Coil_1_Temp

Machine_1_On Tag names that are between C and E

Machine_1_Stat

Temp_Coil_1

Temp_Extruder Extruder_Temp

Temp_Heater

Temp_Machine_Ldr

Figure 2-6 Tag names. The first column shows an example of careful tag naming so that
similar tags are grouped together. In the second column, similar tags are not grouped to-
gether by the first word of their name.

Tag Data Types

The data type could be defined as the type of data that a tag stores, such as a bit, integer
(whole number), real (floating-point) number, string, and so on. The minimum memory
allocation for a tag is 4 bytes (32 bits) plus 40 bytes for the tag name itself. If a tag type
that uses fewer than 4 bytes of memory is used, the controller allocates 4 bytes for it any-
way. A BOOL-type tag for example only requires 1 bit, but the controller allocates 4 bytes
to store it, 1 bit for the actual tag value and 31 unused bits.

Figure 2-7 shows the basic type of tags in a ControlLogix project: base, alias, pro-
duced, and consumed.

Tag Type ‘ Use of This Type of Tag

Base Stores various types of values for use by logic in the project
Alias Represents another tag

Produced Sends data to a different controller

Consumed Receives data from a different controller

Figure 2-7 Basic tag types.

Base-Type Tags

A base-type tag would usually be chosen to create tags that would hold data for logic.
For example, we would choose base type for tags to hold temperature, quantities, bits,
integer numbers, floating-point (real) numbers, and so on. Figure 2-8 shows some of the

26

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

numerical types for base-type tags. Figure 2-9 shows the size number each base-type tag

can hold.

Type of Tag ‘ Use

BOOL Bit

BOOL Digital I/O points

CONTROL Sequencers

COUNTER Counter

DINT Integer (whole number, 32 bit)

INT Analog device in integer mode (very
fast sample rates)

REAL Floating-point (decimal) number

TIMER Timer

Figure 2-8 Number types for base-type tags.

Type ‘ Bit Use and Size of Numbers for Each Type

31 16 15 8 7 1 0
BOOL Oor1
SINT —128to +127
INT —32,768 to +32,767
DINT —2,147,483,648 to +2,147,483,647
REAL —3.40282347E% to —1.17549435E 38 (negative values)

(1J.17549435E*38 to 3.40282347E38 (positive values)

Figure 2-9 Size of numbers that each base type can hold.

The Boolean(BOOL)-type tag is one of the more commonly used tag types. The
BOOL is a bit tag that can have a value of 1 or 0. It is 1 bit in length (see Figure 2-2),
although it takes up 32 bits in memory.

A single-integer(SINT)-type tag is 8 bits in length, although it uses 32 bits in memory.
This type of tag can hold a value between —128 and +127. A SINT tag is used for whole
(nondecimal) numbers.

An integer(INT)-type tag can be used to hold a value between —32,768 and +32,767.
An INT tag uses 16 bits to hold a value, but uses 32 bits in memory. An INT tag is used
for whole numbers. One use of an INT-type tag is when we communicate between a CLX
controller and a SLC. The length of an integer in a SLC is the same as an INT in a CLX
controller.

A double-integer(DINT)-type tag is used for whole numbers. A DINT tag uses 32 bits
to hold a value. A DINT can hold a value between —2,147,483,648 and +2,147,483,647.

CHAPTER 2—MEMORY AND PROJECT ORGANIZATION 27

A REAL-type tag is used to hold decimal (floating-point) values. A REAL tag is also
32 bits.

Figure 2-9 shows types of tags and the size and range of numbers they can store.
Alias-Type Tags

An alias-type tag is used to create an alternative name (alias) for a tag. The alias tag is
often used to create a tag name to represent a real-world input or output. An alias is in-
deed a tag unto itself, not just another name for the base tag. It is linked to the base tag so
that any action to the base also happens to the alias and vice versa. Figure 2-10 shows an
example of the use of alias tags. Note that the alias tag name and the actual address (the
base tag) of the input and output are shown in the rung.

Sensor_1 Fan_hotor
=Local1:.Data.2= =Local2:0 Data.5=
o F Y
N 1 = NS

Figure 2-10 Rung showing a contact and coil. Note the alias name (Fan_Motor) and the base
tag (<Local:2:0.Data.5>) of the output coil. The alias name is easier to understand and easier
to relate to the application, although the base tag contains the physical location of the output
point in the ControlLogix chassis.

Figure 2-11 shows how a tag is configured in CLX. The name is entered first. The tag
type is chosen: Base, Alias, Produced, or Consumed. Next the Data Type is chosen. The
Tag Properties screen also allows the programmer to choose the Scope of and the Style in

which to display the tag.

v Tag Properties - Semar_1 (=] .4
Gerweal | Conmction|
Nase Mo

Dwsongron

Tag Tyom " Bme

™

' Produced

3
DaaTyee [500L =] !
Scoom [arProggam
Ste [Docms -

o] cos |_som | o |

Figure 2-11 How a tag is configured in CLX. Note the choices: Base, Alias, Produced, and Con-
sumed. Note that the programmer also has a choice of the Scope and Style of the tag in this screen.

28

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Scope of Tags

Scope refers to which programs have access to a tag. There are two scopes for tags in
CLX: controller scope and program scope (see Figure 2-12). A controller scope tag is
available to every program in the project. The controller scope tag data is also available to
the outside world, such as SCADA systems. Program scope tags are only available within
the program they are created in. Programs cannot access or use a different program’s tags
if they are program scope. Figure 2-12 shows two programs within a project (Program A
and Program B). Note that each program has tags named Tag_1, Tag_2, and Tag_3. Note
that the names of tags are the same in both programs. They are not, however, the same
tags. There is no relationship between them, even though they have the same name.
They are program scope tags. They are only available to routines within that program.
Note, however, that there are some controller scope tags: Sensor_1, Temp_1, and CNT.
These are available to all programs because they are controller scope. This means,
for example, that Temp_1 is available to both programs and is the same tag for both
programs.

Controller Scope Tags
Global

Sensor_1
Temp_1
CNT

PN

Program A Program B

Program Tags Program Tags
—— —— e
W Tag_] Sther Rouines | 9

. ; Tag_2 Oth_er Rout.mes Tag_2
| Main Routine |

Tag_3 Main Routine Tag_3

Figure 2-12 Scope of tags. (Courtesy of Rockwell Automation, Inc.)

Routines within a program can only access program tags of the program they be-
long to and controller tags. Routines are not able to access the program tags of other
programs.

Creating a Tag

There is more than one way to create tags. Tags can be created one at a time as you
program or tags can be created in the tag editor. The tag editor enables you to create
and edit tags using a spreadsheet-like view of the tags. Figure 2-13 shows the tag editor

CHAPTER 2—MEMORY AND PROJECT ORGANIZATION 29

Arrays

screen with three tags that have been created. Note that these three tags are program
scope. The name of the program is MainProgram, and program scope is the scope that
was chosen.

Note the Edit Tags tab was chosen on the bottom of the screen. You must be in the
edit mode to add or edit tags. The monitor mode is used to monitor tag values.

Scope [Mﬂ"mg;ﬁ. -:J S}pl‘}hﬁ:m-ﬂili - Sont |',-:y‘;!im _v_J

| TagName & | Al For | Base Tag | Type | Sayie | Doscrgtion |
» g B00L Oocemal
5 Cyc_Tmm IMER
3 Temp ' DINT Decimal

»
LT TN Monor Tags)\ Edn Tags / | «

Figure 2-13 Tag editor screen. Note that three tags have been defined. Bit is a BOOL-type
tag. Cyc_Timer is a TIMER-type tag. Temp is a DINT-type tag. Note the scope of these tags
is program scope (named MainProgram). Note also that the two selection tabs at the bottom
are Monitor Tags and Edit Tags and that the Edit Tags tab is active.

Logix5000 controllers also allow you to use arrays to organize data. Arrays are very
important in CLX programming. An array is a tag type that contains a block of mul-
tiple pieces of data. An array is similar to a table of values. Within an array of data
values, each individual piece of data is called an element. Each element of an array
must be of the same data type. An array tag occupies a contiguous block of memory
in the controller; each element is in order. Arrays are useful if you want to index (move)
through the elements of an array. Arrays can be created with 1, 2, or 3 dimensions.

An array is like a table of tags (see Figure 2-14). It can hold the values of multiple
tags. For example, an application might require five different temperatures, one for each
different product that is produced. Figure 2-14 shows an example of a 1-dimensional ar-
ray created to hold five temperatures. The tag name is Temp. A subscript identifies each
individual element within the array.

Temp[0] 210
Temp[1] 200
Temp(2] 190
Temp[3] 180
Temp(4] 170

Figure 2-14 This is a 1-dimensional (one column of values) array. There are five members of
this array, Temp[0] to Temp[4]. Each member of the array has a different value in this example.

30 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Figure 2-15 shows a 2-dimensional array. Note that there are 3 columns and 5 rows in
this example. This would be a 2-dimensional 5 by 3 array and would have 15 members.

Temp[0,0] 225 Temp[0,1] 200 Temp[0,2] 175
Temp[1,0] 220 Temp[1,1] 195 Temp[1,2] 170
Temp[2,0] 215 Temp[2,1] 190 Temp[2,2] 165
Temp[3,0] 210 Temp[3,1] 185 Temp(3,2] 160
Temp[4,0] 205 Temp[4,1] 180 Temp(4,2] 155

Figure 2-15 A 2-dimensional array.

Arrays can also have 3 dimensions. This would be like a cube of values.

Figure 2-16 shows a 1-dimensional array of ten values. The tag name of the array
is Temp. There are ten members: Temp[0]-Temp[9]. The values of each member are
shown in the second column. The fourth column shows that they are all of type DINT.
Remember that arrays can be created for any type of data but an array can only hold one

data type.
Scoge |oTicontsoler)] s
TagName & | Vale |
P |=Temo l.)
- +l‘ﬂﬂ | :n.
1 = Temll] 189
EESE 7s
L] #Temgls) 44
] * Terpid] | 118
1 * TemglS) 123
| #Temgl] .eo
- -_btucm | 113
] * Temg{B) 110
+ Temg(9) 127)

Figure 2-16 An array of ten DINT-type tags.

Creating Arrays

To create an array, you create a tag and assign dimensions to the data type. From
the Logic menu, select Edit Tags. Type a Name for the tag and select a Scope for
the tag (see left side of Figure 2-17). Assign the Array Dimensions (see right side of

CHAPTER 2—MEMORY AND PROJECT ORGANIZATION 31

Figure 2-17). In this example it will be a 1-dimensional array. There will be
five values. Note that in Array Dimensions 5 was entered in Dim 0 and 0 was left in
Dim 1.

Data 1
™ oK |
%ﬁ_mtu ~ Cancel |
CAM_FROFILE L) I
© Ak conTROL
|
i 2cone
ot o | i—
Scope Mg e - ;.ohm s
-

Figure 2-17 Creating an array of five DINTs.

Figure 2-18 shows how the Temp array would appear in the CLX tag editor. Note the
+ to the left of Temp. If you click on the +, the five members of the array will appear.
Figure 2-19 shows the five members. Note that there is a + to the left of each member.
You can click on the + to see each bit within the member. There are 32 bits for each array
member (DINT).

Scoge: [MarProgam w| Show [Srow Al w] Sot [TagName

Ty Nt & | Allias For Bae T T
Fan Mot Local 20 DataSIC) |Locet20.Data SIC) BOOL
Senaer 1 Local 11002 2C) Locat14Data2iC) BOOL

P Temp DINTTS)

Figure 2-18 Tag editor showing the Temp array.

32 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

G g [M‘- aniProgn e ;] Shigun r-"""""" il - Sot [Tag Yarm .:I
T ag Name & | Value o | Force Mask * | Sayle | Typm
I~ Fan_Motor 0 Dl BO0L
| Semwor) 0 Decial BOOL
|- Temo =) (eea) Decens OMTPS)
= -+ fm 0 Dt peal DINT
||+ Temell] 0 Uil DINT
[+ Templ2] 0 Daciemal DINT
| * Temel] 0 Dmcipmal DINT
[- 'd‘l 0 Dol DINT

Figure 2-19 Tag editor showing an array-type tag that was created. Note there are five mem-
bers in this array: Temp[0] through Templ[4].

Produced/Consumed Tags

If we would like to share tag information with multiple controllers, produced- and
consumed-type tags can be used. If we wanted to make a tag available from PLC 1 to
PLC 2, it would be a produced-type tag in PLC 1 and a consumed-type tag in PLC 2.

Structures

Remember that arrays can only hold one data type. CLX offers another type of tag that
can hold multiple types of data. This type is a structure. Structures enable the program-
mer to create a structure-type tag that can hold multiple data types.

A structure can be created to match a specific application’s requirements. Each indi-
vidual data type in a structure is called a member. Members of a structure have a name
and data type, just like tags. CLX has several predefined structures (data types) for use
with specific instructions such as timers, counters, motion instructions, function block
instructions, and so on. Users can create their own structure tags, called a User-Defined
data type.

Figure 2-20 shows an example of a structure-type tag. A tag named TMR_1 was
created. The type chosen for it was TIMER. Once you have created the tag and tag
type for a timer, CLX creates the tag and 9 additional tag members. Note in the figure
that the first member shown is TMR_1.PRE. This is the preset value for this timer
tag. Note the period between the name of the timer and the tag member (PRE in this
example). Note also that PRE is a DINT type. The next tag member is ACC. It is also
a DINT type. Next look at the DN member. This would be set to a 1 when the accu-
mulated (ACC) value is equal to the preset (PRE) value. The DN member is a BOOL
type. A structure-type tag can hold several pieces of data and each member can be a

different type. Structures are also used for counters, motion, and many other purposes
in CLX.

CHAPTER 2—MEMORY AND PROJECT ORGANIZATION 33

[= ™R [[ITII.'H
+ TMA_1 FRE 30000 | Dot OmT
+ TMA_1 ACC o Decimal oMY
TMA_1EN o Decimal 800L
~TMRLTT o Dol 800L
-~ TMR_1 DN o Decimal B800L
CTMA_1FS ol Dexciemal BOOL
~TMA_1LS of Dl BO0L
TMR_1OV 0 Decwal BOOL
~TMR_1ER o) | Deciemal BOOL

Figure 2-20 A structure-type tag for a timer named TMR_1. Note there are nine members:
PRE, ACC, EN, TT, and so on. Note also that PRE and ACC are DINT types and the rest of the
members are BOOLs.

User-Defined Structure Tags

Programmers can create their own structure type for tags. These are called User
Defined. An example is shown in Figure 2-21. To create a User-Defined structure tag,
the programmer must right click on User Defined in the controller organizer and choose
New Data Type and then enter the tag name, members, and their types. This tag will

é Controller Tags -~ M Data Type: Machine_Data
L3 Cortolier Faul Fardier
= =4 Taihs
= (8 MainTask
o L Mairkrog aem
£ Unachedulied Prograse
= 5 Motion Groups
23 Ungrouped Axes
et Tremds
4 Data Types
= 3 Usor-Defined
= Machie_Data
* ‘ Strrgs
& Cgh Prodefined
o g Modube Oefiremd
= &3 1O Configuration
[1] 17%56-8816 inputt

Fal smrys Afei® o aa &

e

Figure 2-21 A User-Defined stucture-type tag. Note that the new tag type is named
Machine_Data and there are four members: Status (BOOL), Temp (REAL), Velocity (DINT),
and Machine_ID (DINT).

34

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

then be available as a new tag type for programming. Figure 2-21 shows an example of
this. The programmer has many machines in his or her company. The machines are all
quite similar and have mostly the same type of data available. The programmer created
the new User-Defined-type tag to combine the common data for each machine and ease
programming. In Figure 2-21 the name of the new User-Defined type is Machine_Data.
Note that four tag names were entered as well as the type for each tag. These will be the
tag members in the new User-Defined structure tag named Machine_Data.

This new tag type is now available and can be used when new tags are created.

Once the User-Defined-type tag has been created, the programmer can use the
new tag type. In Figure 2-22 the programmer created a tag named Weld_Machine in
the tag editor. The programmer then chose Machine_Data as the type. Remember that
Machine_Data was just created as a User-Defined type. When the programmer created
the new User-Defined type, it was automatically added to the Data Types choice list.
Now when the programmer creates a tag named Weld_Machine, the software automati-
cally creates the four tag members.

Data Types

[Machwn_Data o I

fagN

e

] [FTER woTon - Carcel | | Decm
I | it [[0ccm
= ruiua-njokmm:m wo ||
Lsa 4
L] |7 Decm
] [m1EGRATOR ' Decm
EAD LAS sEC oRoER Decm
am N YR T - IE
— . .M
Ay Deseraiom: 1
—1 Dm0 | . Jmﬂlﬁ
m il — = | = Toecs
—s
l—- - - IM
D |+ Weld Machre | | Machine_Data |
-

1o I\ Monsor Tags \Ede Tags / LI —

Figure 2-22 The programmer entered a new tag name (Weld_Machine) and chose
Machine_Data as the type.

CHAPTER 2—MEMORY AND PROJECT ORGANIZATION 35

Figure 2-23 shows the new tag that was created (Weld_Machine) and its members.
Note that the four members created were of the types specified in the Machine_Data
User-Defined tag.

- /ol M P Mache_Data
+ Weld_Machine Tomg DINT e
+ Weld_Machine Velcciy DINT ot
wield_Machie Stabus B00L Ol
+ Weld_Machine Machine_ID DINT Cecipmal
Monor Tags)\Ede Tags / K1

Figure 2-23 Tag members for the tag named Weld_Machine.

Guidelines for User-Defined Structure Data Types
When you create a User-Defined data type, keep the following in mind:

If members that represent I/O devices are used, logic must be used to copy the data
between the members in the structure and the corresponding I/O tags.

If you include an array as a member, it can only be a 1-dimensional array. Multidi-
mensional arrays cannot be used in a User-Defined data type.

When you use the BOOL, SINT, or INT data types, put members that use the same
data type in order. User-Defined data types can be used inside other User-
Defined data types.

Figure 2-24 reviews the definition of data type and structure.

Term ‘ Definition
Data type The type of data a tag can store (BOOL, SINT, REAL, etc.)
Structure A tag type that holds more than one tag and more than one type of tag

Each individual data type in a structure is called a member.

Members each have a name and a data type.

CLX has some standard structures available for counters, timers, etc.

Users can create their own structures for specific uses. These are
called User-Defined data types.

Figure 2-24 Definitions of data type and structure.

36

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

REAL-WORLD I/O ADDRESSING

Addressing of real-world I/O is different in CLX than other PLCs. Study Figure 2-25. The
first part of the address is the Location. This can be Local, meaning in the same chassis
as the controller, or the name of a remote communications adapter or a communications

[T — |
= 8 Controlier Controler Mo
A Controller Togs
(20 Conttrolier Fandt Hardier
C1 Powons -Up Marsdier

Whea you add & module to the V0

= N Tahs
Conbigaranon folder 5 68 ManTask
o B MarProg e he
- witaare maomataally ceates
L Urscheduied Progy ams mﬂdlﬂ-uoudumimhmduh

& (3 Motion Groups

3 Trends
(3 Datas Types

L0 Cotior o]

As 1/0 sddeess follows thus formas

[lcuhon

JEIE IR

[- Opoonal

Figure 2-25 Real-world tag addressing. (Courtesy of Rockwell Automation, Inc.)

bridge module. A colon follows the Location. The next part of the address is the Slot
number of the I/O module in the chassis. After another colon the Type of data follows.
This can be an I (input), O (output), C (configuration), or S (status). A period delimiter is
used next, followed by the Member. The Member specifies the specific data from the I/O
module. If it is a digital input or output module, it stores the bit values for the module. If
it is an analog module, it stores the data for a channel. A period delimiter is next, followed
by the Submember. The Submember is specific data related to a member. Another pe-
riod follows and then the Bit. The bit is a specific point on a digital module, one bit of an
output module, for example. Figure 2-26 is a table that explains each part of an address.
Occasionally the Member or Submember does not exist.

The good news is that the programmer does not have to type the address for an
alias tag. When an alias tag is created, the address can be chosen from the available
controller 1/0.

CHAPTER 2—MEMORY AND PROJECT ORGANIZATION 37

Address ‘ Content

Location Network location

Local = same chassis as controller

Adapter_Name = name of a remote communications
adapter or a bridge module

Slot Slot number of /0 module in the chassis
Type Type of data

| = input

O = output

C = configuration

S = status
Member Specific data from the /O module

For a digital module, stores input or output bit values for the module
For an analog module, stores the data for a channel

SubMember Specific data related to a member

Bit Specific point on a digital I/O module

Figure 2-26 CLX real-world tag addressing.

I1/0 Module Tags

When you add modules to a project, tags are automatically created for the modules.
Figure 2-27 shows the Controller Organizer after an input module was added (slot 3)
and an output module was added (slot 4). Note that they were diagnostic modules. Di-
agnostic modules have more tags than many of the other I/O modules. RSLogix5000

i Controllier Extyiucier
k’. antroller Tage
ontrolier Fault Mandier
I Powesr U Mardier
£ Tashs
o MainTad
- ‘ B Sy e
I Panculied Py oy e
& L0 Moo Geongs
Temucs
. Data Types
i 1O Configuration
(3] 17560140 Duagnostic_input_Modulle
g (4] 1756-0014D Duagrostic_Outputt_Modulle

Figure 2-27 Two modules added to a project.

38

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

automatically creates the correct controller scope tags for the modules that are
installed.

Figure 2-28 shows that tags that were created for the input module that was added.
Note that the top portion of the tag editor (Local:3:C) is configuration tags. These are
set when the module is configured. Configuration tags determine the characteristics and
operation of a module.

240000_0000_0000_0000_1111_1111_1111 1111
240000_0000_0000_0000_1111_1111_1111_1111
240000_0000_0000_0000_1111_1111_1111_1111
240000_0000_0000_0000_1111_1111_1111 1111

2#0000_0000_0000_0000_0000_0000_0000_0000 |
240000_0000_0000_0000_0000_0000_0000_0000

240000_0000_0000_0000_0000_0000_0000_0000 |

Figure 2-28 Tag editor showing tags that were automatically added after the input module
in slot 3 was added.

The bottom portion of the tag editor (Local:3:I) shows the input tags that are avail-
able. The first ones are Fault bits that can be used in logic or for troubleshooting. The
second set, labeled Data, contains the actual input bits from the module. The third set of
inputs is the CST Timestamp (CST stands for coordinated system time) information. The
last set of inputs are the OpenWire inputs.

Figure 2-29 shows that tags that were automatically created for the output
module that was added. Note that the top portion of the tags (Local:4:I) are input-
type tags. These include Fault, Data, CST Timestamp, FuseBlown, NoLoad, and
OutputVerifyFault.

CHAPTER 2—MEMORY AND PROJECT ORGANIZATION 39

Next are the actual outputs (Local:4:0.DATA). This module has 16 outputs, given in
the first 16 bits.

The last set of tags are configuration tags. These are set when the module is
configured. Configuration tags determine the characteristics and operation of a
module.

240000_0000_0000_0000_0000_0000_0000_0000
240000_0000_0000_0000_0000_0000_0000_0000

240000_0000_0000_0000_0000_0000_0000_0000
240000_0000_0000_0000_0000_0000_0000_0000
240000_0000_0000_0000_0000_0000_0000_0000

0
240000_0000_0000_0000_0000_0000_0000_0000
240000_0000_0000_0000_0000_0000_0000_0000
240000_0000_0000_0000_0000_0000_0000_0000
2#0000_0000_0000_0000_0000_0000_0000_0000
240000_0000.000020090_1111-4330:4111_1111
240000_0000_0000_0000_1111_1111 1111 1111
240000_0000_0000_0000_1111_1111 1111 1111

Figure 2-29 Tag editor showing tags that were automatically added after the input module
in slot 3 was added.

MORE ON THE USE OF TASKS

Remember that a CLX project can have multiple tasks and that tasks can be sched-
uled. The default RSLogix 5000 project provides a single task for all your logic. Al-
though this is sufficient for many applications, some situations may require more than
one task.

40 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

A Logix5000 controller supports multiple tasks that can be used to schedule and pri-
oritize the execution of programs. This can help balance the processing time of the con-
troller. Remember that

= A controller can only execute one task at one time.
= A task that is executing can be interrupted by another higher priority task.
u Only one program executes at one time in a task.

Figure 2-30 explains the three possible task execution types and the characteristics of

each type.

To execute a task ‘

Continuously

Use a(n)

Continuous
task

Description

Runs in the background. Any CPU time that is not allocated
to other operations is used to execute the programs in

the continuous task. Other operations would include CPU
time for communications, motion control, and periodic or
event-driven tasks.

Runs all of the time. When a scan is complete a new one
begins immediately.

Projects do not require a continuous task.
There can only be one continuous task.

At a periodic rate,
multiple times
within the scan of
the other logic,

Periodic task

Executes at a specific time period. When the time period
occurs, a periodic task

Interrupts any task with a lower priority and executes once
Returns control to where the previous task left off

The time period can be configured from 0.1 ms to 2000
seconds.

Default time is 10 ms.

Immediately when
an event occurs

Event task

Only executes when a specific event (trigger) occurs.
When the event occurs, an event task

Interrupts any lower-priority task, and executes once
Returns control to where the previous task left off
The trigger can be a(n)

Digital input

New sample of analog data

Certain motion operation

Consumed tag

Event instruction

Figure 2-30 Task execution types.

It is important to choose the correct type of execution for each task. The table in
Figure 2-31 shows examples of types of applications and which type of task execution
they might be best suited to.

CHAPTER 2—MEMORY AND PROJECT ORGANIZATION 41

Application Example ‘ Type of Task

Fill a tank and control its level (Without PID) Continuous

Monitor, control, and display application parameters

Monitor a tag every 0.1 second and calculate a rate of change to be used for Periodic
control

Perform quality measurements every 40 ms

Control Level with PID

On a packaging line, seal the package immediately when a registration mark Event
is sensed

If a specific alarm is sensed, shut down the machine immediately

When a box arrives at the taping position, execute the taping routine
immediately

Figure 2-31 Examples of task execution types.

Number of Tasks

A ControlLogix CPU can support up to 32 tasks. Only one task executes at a time. Only
one task can be continuous. It is possible to have too many tasks. Every task takes control-
ler time away from the other tasks when it executes. If there are too many tasks, it is pos-
sible that tasks may overlap. If a task is interrupted for too long or too frequently, it may
not complete its execution before it is triggered again. It is then possible that the continu-
ous task may take too long to complete.

At the end of a task’s execution, the controller performs overhead operations (output
processing) for the I/O modules in the system. The output processing may affect the up-
date of the I/O modules in the system. Output processing can be turned off for a specific
task; this reduces the elapsed time of that task.

Every task has a watchdog timer that specifies how long a task can execute before it
triggers a major fault. It is assumed that something has gone wrong if a task takes too long
to execute. The watchdog timer begins to accumulate time when the task is initiated and
stops accumulating time when all the programs within the task have executed. A watch-
dog time can range from 1 ms to 2000 seconds. The default time is 500 ms.

If a task takes longer than the specified watchdog time, a major fault occurs. The
time includes interruptions by other tasks. A watchdog time-out fault may also occur if
a task is repeatedly triggered while it is still executing. This can occur if a lower-priority
task is interrupted by a higher-priority task, and it will delay the completion of the lower-
priority task.

It is possible to use the controller fault handler to clear a watchdog fault. However,
if the same watchdog fault occurs again during the same logic scan, the controller enters
faulted mode, regardless of whether the controller fault handler clears the watchdog
fault.

42 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Setting the Watchdog Time for a Task

The watchdog timer is a preset parameter that the programmer can configure. The watch-
dog timer monitors the scan time of a task. If the watchdog timer reaches the PRE value,
a major fault occurs. Depending on the controller fault handler, the controller may shut
down. To change the watchdog time of a task, right-click the task and select Properties.
Next select the Configuration tab and set the watchdog time-out for the task in millisec-
onds (see Figure 2-32). The watchdog default time of 500 ms is shown in Figure 2-32.

BB Task Properties - MainTask] b
Germal Comfiguration | Progyam Schedule| Morice |
Tyoe | Compruacas -
Warchdog [S00000 me
™ Duabie Automatic Output Processing To Reduce Tak Overhead
™ Iebubit Tank

[T] coxed | o0 | He |

Figure 2-32 Setting the watchdog timer.

QUESTIONS

List the three main components that a project is composed of and describe each.
Which component in a project contains the logic?

What are the three main types of tasks?

What is a project?

What is the minimum memory allocation for a tag?

What is a base-type tag?

What is a DINT?

o DUk o=

CHAPTER 2—MEMORY AND PROJECT ORGANIZATION 43

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

What is a SINT?

What is a BOOL? What is it typically used for?

What is an alias tag, and what is it used for?

What is the difference between a produced tag and a consumed tag?

What is an array tag? Write down an example of an array tag used to hold seven speeds.
What is a structure-type tag?

What are the two types of tag scope? What are the differences between them?
What is the difference between an array tag and a structure tag?

What is a User-Defined tag? What is it used for?

True or False: More than one task can execute at one time.

True or False: More than one program can execute at one time.

What are the three execution types for tasks?

What is a watchdog timer?

How can the watchdog time be changed?

This page intentionally left blank

CHAPTER

Ladder Logic Programming

OBJECTIVES

On completion of this chapter, the reader will be able to:

= Define terminology such as rung, contact, coil, scan, examine if open, examine if
closed, normally open, and normally closed.

» Explain the difference in operation between normally open and normally closed
contacts.

= Write basic ladder logic.

» Describe the relationship between the states of real-world switches and normally
open versus normally closed contacts.

LADDER LOGIC

There are several languages that can be used to program industrial controllers. Ladder
logic is still the most commonly used language. Ladder logic was designed to be easy
for electricians to use and understand. Symbols were chosen that look similar to sche-
matic symbols of electric devices so that a program would look like an electric circuit.
An electrician who has no idea how to program a computer can understand a ladder
diagram.

The instructions in ladder logic programming can be divided into two broad catego-
ries: input and output instructions. The most common input instruction is a contact, and
the most common output instruction is a coil. Figure 3-1 shows input and output instruc-
tions in logic. Input instructions are on the left and output instructions are to the right of

the logic.

46

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Inputs Outputs
‘ Sensor_7 Sensor_2 Level_Sensor Output_1 Pump_2 ‘
I1E 1E] E IR IR

‘ 1L JLC L \J \/ ‘

Figure 3-1 A rung of ladder logic.

Contacts

Most inputs to a PLC are discrete. Discrete devices only have two states: on or off.
Contacts are used in ladder logic to represent these devices with two states. Symbols for
the two types of contacts are shown in Figure 3-2.

1k |.;4.|

Figure 3-2 A normally open and a normally closed contact.

Contacts are like discrete inputs.

Real-World Switches

To understand how a contact will work in ladder logic, we need to take a look at the two
main types of mechanical switches: normally open and normally closed. Figure 3-3 shows
the two types of switches. A doorbell switch is a normally open switch. A normally open
switch will not pass current until it is pressed. A normally closed switch will allow current
to flow until it is pressed.

S Y

Figure 3-3 Diagram of a normally open switch and a normally closed switch.

Normally Open Contacts
Normally open contacts are also called examine-if-closed (XIC) contacts. Think about a
doorbell switch again. If you use a normally open switch, the bell will be off until someone
pushes the switch and it allows current to flow. If you use a normally closed switch, the bell
will be on until someone pushes the switch to stop the current flow. A normally open switch
is true if the real-world input associated with it is true. Think about a home doorbell again.
There is a push-button switch (momentary) next to the front door. The real-world switch is
anormally open switch. When someone pushes the switch, the bell in the house rings.

The normally open contact in ladder logic is similar to the normally open doorbell
switch. Consider a sensor that we would like to control a pump. A normally open contact
in a ladder diagram could be used to monitor the real-world level sensor that controls

CHAPTER 3—LADDER LOGIC PROGRAMMING 47

the pump. When the level sensor becomes true, the normally open contact in the rung
of logic would allow current flow and the output (pump) would be on while the sensor is
true (see Figures 3-4 and 3-5).

| Sensor_2 Pump_2 |
E £
| S

Figure 3-4 Normally open contact. Real-world input Sensor_2 is false so the normally open
contact is not energized. The rung is false and the output is off.

Sensor_2 Pump_2
] = = m=—

Figure 3-5 Normally open contact. Real-world input Sensor_2 is true so normally open
contact is energized. Thus the rung is true, and the output is on.

Figure 3-6 shows a conceptual diagram of a PLC with an input and output. The logic
is shown in the middle in the block that represents the CPU. Note the input and output
image table. The sensor attached to input 0 is true, and there is a 1 in the input table with
the bit associated with input 0. In the rung of the ladder logic, the normally open contact
is true because the bit in memory for input 0 is a 1 (true). This makes the rung conditions
true, so the output is energized. Note the 1 in the output table associated with output 11.

Input Module| PLC Input Memory Output Module
Sensor nput 0 Output 0
== . v o 2
> @ 0000000000000 0000000000000000001 @ @
@ @
2 4 Input O Output 11 2 4
o S X
@ @
2 5 T o5 On
@ @ 0000000000000 0000000010000000000 @ P
@ PLC Output Memory @

Figure 3-6 Simple conceptual diagram of a PLC.

Normally Closed Contacts

The other type of discrete contact is the normally closed contact. A normally closed con-
tact is also called an examine-if-open (XIO) contact. This type of contact can be confusing
at first. A normally closed contact will pass power until it is energized. A normally closed
contact in a ladder diagram is only energized if the real-world input associated with it
is false. Figure 3-7 shows an example of a normally closed contact in a rung of logic. If

48

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Coils

real-world Sensor_2 is off, the normally closed contact in the rung is true and the output
(Pump_1) will be on. If Sensor_2 in the real world is on (true), this contact will open and
the output (Pump_1) will be off.

| Sensor_2 Pump_1 |
—I/r I
| 1/'E

N/ |
Figure 3-7 A normally closed contact is used in the rung. If the input associated with that
contact is closed, it forces the normally closed contact open. No current can flow through the
rung to the output, so the output is off.

Remember that normally closed contacts are also called XIO contacts. If the bit as-
sociated with a normally closed instruction is a 0 (off), the instruction is true and passes
power. If the bit associated with the instruction is a 1 (true), the instruction is false and
does not allow current flow. Note that the normally closed contact has the opposite effect
of the normally open contact.

Figure 3-8 shows two rungs. The first rung has a normally closed (XIO) contact. The
second rung has a normally open (XIC) contact. The tag is the same for each: Sensor_2. Sen-
sor_2 is the tag name for a real-world switch that is off. Note that the normally open contact
in the second rung is open and will not pass power. In the first rung, the normally closed con-
tact remains closed and does energize the output because the real-world switch is off.

Sensor_2 Pump_1
‘l,r TR
' N

Sensor_2 Pump_2

JE)
JLC N/

Figure 3-8 Logic example.

Figure 3-8 shows the same logic that was shown in Figure 3-9, but in this example
the real-world switch (Sensor_2) is true. Note that the normally open contact in the sec-
ond rung is true and that the normally closed contact in the first rung is false now because
the switch is true.

A coil is symbol for an output. Rockwell Automation calls the typical output coil an output
energize (OTE) instruction. The OTE instruction sets a bit in memory. If the logic in its
rung is true, the output bit will be set to a 1. If the logic of its rung is false, the output bit is
reset to a 0. Outputs are things such as lights, signals to other devices, motors contactors,

CHAPTER 3—LADDER LOGIC PROGRAMMING 49

Sensor_2 Pump_1
‘I/r Y
1/C)

Sensor_2 Pump_2
JE IR
1 C \ J

Figure 3-9 Logic example.

pumps, counters, timers, valves, and so on. Coils are only used on the right side of a rung.
Contacts are conditions on rungs. If all of the conditions are true, the rung is true and the
coil (output) will be true. The symbol for a coil is shown in Figure 3-10. A specific output
coil should only be used once in logic. Note that there can be parallel conditions to control
the coil on the rung. A specific coil should never be used in more than one rung. The out-
put that the coil represents can be used on the left as contact(s).

Qutput_1
- —

Figure 3-10 The symbol for a coil.

Figure 3-11 shows the RSLogix 5000 toolbar for ladder logic programming.

Rung XIC XIO OTE OTU OTL
4 St ae]ve]][«
Branch BranchlLevel — Additional Instructions

Figure 3-11 Ladder logic toolbar. XIC is the examine-if-closed contact, XIO is the examine-if-
open contact, OTE is the output energize instruction, OTU is an output unlatch instruction, and
OTL is an output latch instruction.

Ladder Diagrams

The basic structure of a ladder diagram looks similar to a ladder (see Figure 3-12). There
are two rails (uprights) and there are rungs. The left and right rails represent power. If
the logic on a rung is true, power can flow through the rung from the left upright to the

right upright.

50 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Figure 3-12 is a simple application involving a heat sensor and a fan. There is one
input and one output for this application. A heat sensor is connected to a PLC input, and
a fan is connected to a PLC output. The left and right rails represent voltage that will be
used to power the fan if the sensor state is true.

| Heat_Sensor Fan |
'_I'l il

C
C L, |

Figure 3-12 Ladder logic example.

When a PLC is in run mode, it monitors the inputs continuously and controls the
states of the outputs. This is called scanning. The time it takes for the PLC to evaluate the
logic and update the I/O table each occurrence is called the scan time. The more complex
the ladder logic, the more time it takes to scan.

Figure 3-13 shows a conceptual view of a PLC system. The real-world inputs are
attached to an input module (left side of the figure). Outputs are attached to an output
module (right side of the figure). The center of the figure shows that the CPU evaluates
the logic. The CPU evaluates user logic by looking at the inputs and then turns on out-
puts on the basis of the logic.

Input Ouput
St Module PLC CPU Module
= Irput 1 Output 1 @1——
T @ Iput 2 O utput 2 @——4—
S2 @ @
@ _ @
i » PLC Logic ’ 2
Power b @
@ @
'[Supply >
—@ Common o m—

@+
-

Figure 3-13 Conceptual view of a PLC system.

MULTIPLE CONTACTS
Series Logic

Contacts can be combined to form logic on a rung. A two-hand switch on a punch press is
a good example. For safety, the punch press should only operate if both of the operator’s
hands are on the switches.

Figure 3-14 shows an example of a two-hand safety switch and series logic. The
two hand switches are on the left and right. The switch in the middle is a stop switch.

CHAPTER 3—LADDER LOGIC PROGRAMMING 51

A two-hand switch can help assure that the operator’s hands cannot be in a danger-
ous part of the machine when it punches a part. The switches represent an AND
condition. The ladder for the PLC is shown in Figure 3-14. Note that the real-world
switches were programmed as normally open contacts in the logic. They are in series
in the rung. Both must be true for the machine to punch. This is for illustrative pur-
poses only. Chapter 15 will examine how safety switches are implemented with safety
relays.

| Hand_Switch_1 Hand_Switch_2 Punch |
Pl

o | JE
| R = 5 i |

Figure 3-14 A two-hand safety switch. The two hand switches are on the left and the right
of the photo.

If the operator removes one hand, the punch press will stop operation. In fact
with newer safety relay technology, both switches have to be turned on at almost ex-
actly the same time to make the machine run. Safety relays also prevent an operator
from taping one switch closed. Contacts in series are logical AND conditions. In this
example, the left-hand switch AND the right-hand switch would have to be true to run
the punch press.

Figure 3-15 shows a series circuit. Sensor_1 AND Sensor_2 AND NOT Sensor_3
AND Sensor_4 must be true to turn the output named Fan_Motor on.

52 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

| Sensor_1 Sensor_2 Sensor_3 Sensor_4 Fan_Mator |
AL 1C I E x [= RN
| 1 C 1 C o i 1L ~ |

Figure 3-15 This figure shows a series circuit.

Figure 3-16 shows a robotic cell with light curtain protection. The light curtain has
two safety outputs. If someone or something blocks any of the light between the light
curtain transmitter and receiver, the outputs become false. If everything is normal and
no light is blocked, the outputs are both true. There are two outputs to make the system
more safe.

This example was an oversimplification of safety technology and logic in order to
make contacts more understandable. Light curtains and other safety technology will be
covered in Chapter 15.

Figure 3-16 Robotic cell with light curtains and other safety devices.

Parallel Logic

Series logic was used to create AND conditions. Parallel logic is used to create OR condi-
tions. These are often called branches. Branching can be thought of as an OR situation.
One branch OR another can control the output.

Study Figure 3-17. This logic uses two different inputs to control the doorbell. If
either switch is on, we would like the bell to sound. A branch is used to create this logic.

CHAPTER 3—LADDER LOGIC PROGRAMMING 53

If the front door switch is closed, electricity can flow to the bell. OR if the rear door
switch is closed, electricity can flow through the bottom branch to the bell.

Front_Doorbell_Switch Door_Bell
JL F
4L N\

Rear_Doorhell_Switch

JE
J L

Figure 3-17 Ladder logic to control a home doorbell. This figure shows a parallel condition.
If the front door switch is closed, the doorbell will sound, OR if the rear door switch is closed,
the doorbell will sound. These parallel conditions are also called OR conditions.

ORs allow multiple conditions to control an output. This is very important in the in-
dustrial control of systems. Think of a motor that is used to move the table of a machine.
There are usually two switches to control table movement: a jog switch and a feed switch.
Either switch must be capable of turning the same motor on. This is an OR condition.
The jog switch OR the feed switch can turn on the table feed motor.

Series and parallel conditions can be combined in logic. Figure 3-18 shows a simple
example. If Inp_1 AND Inp_2 are true, Out_1 will be turned on. OR if Inp_3 AND
Inp_2 are true, Out_1 will be turned on.

Inp_1 Inp_2 Out_1
d L JE r
1 JC ~
Inp_3

—3

Figure 3-18 Rung using parallel (OR) and series (AND) logic.

Outputs may also be branched. Figure 3-19 shows an example of two outputs being
branched. In this example, if the rung is true, both outputs will be turned on.

Sensor_1 Fan_Moator
1E e
J L R
Sensor_3 Pump_2
1LC PR
J L \ S
Sensor_7
6 i =
1 C

Figure 3-19 Example of parallel outputs.

54

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

START/STOP CIRCUITS

Machines typically have a start and a stop switch. The start switch is typically a nor-
mally open momentary type. The stop switch is typically a normally closed momentary
switch. Knowledge of the ladder logic for a simple start/stop circuit can help us under-
stand several important concepts about ladder logic. It can also help us understand the
effect of real-world switch conditions on normally open and normally closed contacts.
The normally closed contact is often confusing to many who are beginning to program
ladder logic.

Examine Figure 3-20. Notice that a real-world start switch is a normally open mo-
mentary push button. When the button is pressed, it closes the switch. When the button
is released, the switch opens. A real-world stop switch is a normally closed switch. When
pressed, it opens the contacts and stops current flow.

Stop Stop Start Run
J1E J1E
—Q_I_D— 1 C ()
Start

Ll
m

Figure 3-20 Start/stop circuit.

If the start switch is pressed momentarily, the normally open Start contact will be-
come true. The Stop contact is also true, because the real-world stop switch is a nor-
mally closed switch. The output coil Run will be true. The Run contact bit is then used
in the branch around the Start contact. The Run bit is true so this bit latches around the
Start bit.

The output (Run) latches itself on even if the start switch opens. The output (Run)
will shut off only if the normally closed stop switch (Stop) is pressed. If the normally
closed contact Stop opens, then the rung would be false and Run would be turned off. To
restart the system, the Start button must be pushed. Note that the real-world stop switch
is a normally closed switch, but that in the ladder, it is programmed as a normally open
contact. This is done for safety. It is called a fail-safe. If the stop switch fails, we want the
machine to stop. If a wire to the stop switch is cut, we want the machine to stop. By using
a normally closed real-world switch with a normally open contact in the logic we fail-safe
the logic.

There are many ways to program start/stop circuits and ladder logic. Figures 3-21 and
3-22 show examples of the wiring of start/stop circuits. Safety is always the main consider-
ation in start/stop circuits.

CHAPTER 3—LADDER LOGIC PROGRAMMING

55

Stop N
L1 Motor Starter
sor S
.
» | I |
) 11

Figure 3-21 Single-phase motor start/stop circuit example.

Stop Start Overload
-
— 1o S @—l I—
M
1 1
11

oL
X,

4 Py
M oL \
L2 M & 3-Pha§e

Figure 3-22 Start/stop circuit example for a three-phase motor.

L1 €

L3

USE OF OUTPUTS IN LOGIC

Output instructions can be placed in series on a rung in a CLX routine (see Figure 3-23).
This is equivalent to outputs in parallel.

Qutput_ 1 Pump_2
F il !

.
L

Figure 3-23 OTE coils used in series at the end of a rung.

56 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Output instructions can be placed in branches (parallel) in ControlLogix. Figure 3-24
shows an example of output instructions used in parallel in logic. In ControlLogix there is
no limit to the number of branches you may use.

Pump_2

Y
i

Output_1
—_—

Figure 3-24 Example of OTE instructions used in parallel.

Output branches can also be nested. Figure 3-25 shows an example of a nested branch.
Note that if Sensor_3 is true, the Bell will be turned on. The branched rung below that
uses Sensor_2 to control the remaining branches. If Sensor_3 is true and Sensor_2 is true,
the Bell output and the Pump_2 output will be turned on. The next branch adds another
condition (Sensor_7). Branches can only be nested to a maximum of six levels.

Sensor_3 Bell
= Y
J |_ N S
Sensor_2 Pump_2 ‘
aLC

Sensor_7 Output_1
JE i
= oy L

Figure 3-25 Nested output branch.

Output instructions can be placed between input contacts as long as the last instruc-
tion on the rung is an output instruction in CLX (see Figure 3-26).

| Sensor_7 Sensor_2 Output_1 Level_Sensor Pump_2 |
JE JE ' i,] E "

| J L I i L A |

Figure 3-26 Example of OTE coils being used between contacts in logic.

Logic Examples

The states of the real-world inputs are shown in Figure 3-27. Study the logic in Figure 3-27.
The output is on. Why?

CHAPTER 3—LADDER LOGIC PROGRAMMING 57

Real-World Input State of Real-World Input

Inp_1 False
Inp_2 True
Inp Output_1
| £,
] WS

= |
Lig
mh, M

Figure 3-27 Output is true in this example. The output is on because real-world Inp_2 is true,
making the normally open contact in the rung true. This is parallel (OR) logic.

The states of the real-world inputs are shown in Figure 3-28. Study the logic in
Figure 3-28. The output is energized. Why?

Real-World Input State of Real-World Input

Inp_1 True
Inp_2 False
Inp_3 True
Inp_1 Inp_2 Output_1
1L JIE &5
J G J LU ~ A
Inp_3
1€
I B

Figure 3-28 Out_1 is true in this example because real-world inputs Inp_1 and Inp_3 are true
making contacts normally open Inp_1 and normally open Inp_3 true.

The state of the real-world intputs are shown in Figure 3-29. Study the logic in
Figure 3-29. The output is energized. Why? Hint: Remember how normally closed
contacts work.

58 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Real-World Input State of Real-World Input

Inp_1 True

Inp_2 True

Inp_3 False

Inp_4 False
Inp_3 Inp_1 Inp_2 Output_1
JE TE g E L5
J L J L J S
Inp_4
“'I;I'"
JL

Figure 3-29 Output is energized in this example because Inp_4 contact is true since its
real-world input is false and real-world inputs Inp_1 and Inp_2 are true, which make the

normally open contacts true in the logic.

The states of the real-world inputs are shown in Figure 3-30. Study the logic in

Figure 3-30. The output is off. Why?

Real-World Input State of Real-World Input

Inp_1 True
Inp_2 True
Inp_3 False
Inp_1 Inp_2 Output_1
JIHE I E e
J L JL Mk
Inp_3
= i
J L

Figure 3-30 Output is off in this example because real-world Inp_2 is true making logic
contact Inp_2 false. Contact Inp_3 is also false because the real world Inp_3 is false.

CHAPTER 3—LADDER LOGIC PROGRAMMING 59

The states of the real-world inputs are shown in Figure 3-31. Study the logic in
Figure 3-31. The output is off. Why?

Real-World Input State of Real-World Input

Inp_1 False
Inp_2 False
Inp_3 True
Inp_4 True
Inp_1 Inp_2 Output_1
= i & 1L £
J L J L i
Inp_3
TE
 dn
Inp_4_ Inp_4
T E 1 E
J L R B

Figure 3-31 Output is off in this example because contacts Inp_2, Inp_3, and Inp_4 are false
in logic.

Immediate Outputs

The immediate output (IOT) instruction is used to update output states immediately. In
some applications the ladder scan time is longer than the needed update time for certain
I/Os. For example, it might cause a safety problem if an output were not turned on or off
before an entire scan was complete. In these cases or when performance requires im-
mediate response, IOT instructions are used. When the CPU encounters an IOT instruc-
tion, it immediately transfers data to a specified I/O slot.

Figure 3-32 shows an example of an IOT instruction. In this example the outputs for
the module in slot 2 would be updated immediately when they were encountered during
the scan.

| Sensor_2 0T
| J E Immediate Output

Update Tag Local:2:0

Figure 3-32 Format for an IOT instruction.

60 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

One-Shot (ONS) Instructions

An ONS instruction can be used to turn an output on for one scan. Figure 3-33 shows an
example. If the Start contact becomes true, the ONS instruction will turn Out_1 on for
one scan and then turn it off. One-shot-rising (ONR) and one-shot-falling (ONF) instruc-
tions are also available. The ONR instruction requires a low-to-high transition. The ONF
requires a high-to-low transition. Figure 3-34 explains the use of some contact and coil
instructions.

ONS instructions are usually used to execute things one time. For example, if we
need to have an instruction, write parameters once each time we switch products,
we would only need to write it once. We would not want to write it every scan while the
program runs.

| Start One_Shot_Bit Out_1 |
1 E I 1
| 5. {ONS | {2 |

Figure 3-33 An ONS instruction.

To: ‘ Instruction
Enable outputs when bit is set. XIC
Enable outputs when a bit is cleared. XIO
Set a bit. OTE
Set a retentive bit. OTL
Clear a retentive bit. OoTU
Enable outputs for one scan each time a rung becomes true. ONS
Set a bit for one scan each time the rung goes true. OSR
Set a bit for one scan each time the rung goes false. OSF

Figure 3-34 Instructions.

Latching Instructions

Latches are used to lock in a condition. For example, if an input contact is on for only a
short time, the output coil would be on for the same short time. If it were desired to keep
the output on even if the input went low, a latch could be used. This could be done by us-
ing the output coil to latch itself on (see Figure 3-35).

CHAPTER 3—LADDER LOGIC PROGRAMMING 61

Sensor_1 Sensor_2 Fan

TE TE Py

s i m i NS
n
1EC
C

Figure 3-35 Note that even if coil Sensor_1 is only on for a very short time, the output (Fan)
will latch around the Sensor_1 contact and keep itself on. It would stay on in this example until
the normally closed contact opened. Latching can also be done with a special coil called a
latching coil.

Output Latch (OTL) Instruction

The OTL instruction is a retentive instruction. If this input is turned on, it will stay
on even if its input conditions become false. A retentive output can only be turned off by
an output unlatch (OUT) instruction. Figure 3-36 shows an OTL instruction and an OTU
instruction. In this case if the rung conditions for this output coil are true, the output bit
will be set to a 1. It will remain a 1 even if the rung becomes false. The output will be
latched on. Note that if the OTL is retentive and the processor loses power, the actual
output turns off, but when power is restored, the output is retentive and will turn on. This
is also true in the case of switching from run to program mode. The actual output turns
off, but the bit state of 1 is retained in memory. When the processor is switched to run
again, retentive outputs will turn on again regardless of the rung conditions. Retentive
instructions can help or hurt the programmer. Be very careful from a safety standpoint
when using retentive instructions. You must use an unlatch instruction to turn a retentive
output off.

Pump_2 Pump_2
—— —U—

Figure 3-36 OTL and OTU instructions.

When a latching output is used, it will stay on until it is unlatched. Figure 3-37
shows an example of latching an output. If real-world Sensor_1 is true and real-world
Sensor_2 is false, the output named Fan will be latched on. The output will remain
energized even if the rung conditions become false. Fan will remain energized until an
unlatch instruction is used.

| Sensor_1 Sensor_2 Fan |
£ I E 3
JC

:
| T

Figure 3-37 Use of a latching output.

62 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Output Unlatch (OTU) Instruction

The OTU instruction is used to unlatch (change the state of) retentive output instruc-
tions. It is the only way to turn an OTL instruction off. Figure 3-36 shows an OTU
instruction. If this instruction is true, it unlatches the retentive output coil of the same
name. Figure 3-38 shows an example of an OTU instruction to unlatch the output.

| Unlstch_Bit Fan |
1L A
|]

Figure 3-38 Use of an OTU instruction.

Program Flow Instructions

There are many types of flow control instructions available for PLCs. Program flow
instructions can be used to control the sequence in which the program is executed.
Program flow instructions allow the programmer to control the order in which the CPU
scans the ladder diagram. These instructions can be used to minimize scan time or de-
velop more efficient programs. They can be used to troubleshoot ladder logic as well.
Program flow instructions can be used to jump around sections of logic for testing.
Program flow instructions must be used carefully. Serious consequences can occur if
they are improperly used because their use can cause portions of the ladder logic to be

skipped.

Subroutine Instructions

Jump-to-Subroutine (JSR) Instructions
Rockwell Automation also has subroutine instructions available like the JSR, subroutine
(SBR), and return (RET) instructions. Subroutines can be used to store sections of logic
that must be executed in several points in your program. A subroutine saves effort and
memory because you only program it once. Subroutines can be nested. This allows the
programmer to direct program flow from the main program to a subroutine and then on
to another subroutine. Figure 3-39 shows the use of a JSR instruction.

In ControlLogix the JSR instruction specifies the name of the routine to be executed.
In this example, a routine named Manual_Mode will execute while the contact named
Sensor_2 is true.

| Sensor_2 JSR
ow (]

Routine Name Manual_Mode

| 5 Jump To Subroutine

Figure 3-39 Use of a JSR instruction.

CHAPTER 3—LADDER LOGIC PROGRAMMING 63

Operand | Type | Format | Description

Input parameter BOOL, SINT, Immediate, Tag, Data from this routine that
INT, DINT, REAL, Array Tag will be copied to a tag in the
Structure subroutine. Input parameters

are optional. Multiple input
parameters can be used, if

needed.
Return parameter BOOL, SINT, Immediate, Tag, Tag in this routine to which you
INT, DINT, REAL, Array Tag want to copy a result of the
Structure subroutine. Return parameters

are optional. Multiple return
parameters can be used, if
needed.

Figure 3-40 Parameters for subroutine instructions.

If you want to exchange data with a subroutine, the SBR and the RET instructions
are used. They are optional instructions that exchange data with the JSR instruction.
The SBR instruction is used to input values into a subroutine from the JSR instruction
that called the routine. Study Figure 3-41. The SBR instruction must be the first instruc-
tion in a ladder logic routine. The RET instruction is used to return parameters with the
JRS instruction that called it. Note that there is logic between the two instructions.
The usual use would be to send one or more values to a routine, do some manipulation
of the values, and return one or more values to be used by other routines.

SBR
Subroutine
Input Par Value_1
Input Par Value_2

Additional Logic

v

| RET
‘ Return

Return Par Calc_Value

Figure 3-41 Use of an SBR and a RET instruction to exchange parameters with the calling
routine.

64 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Jump (JMP) Instruction
CLX has JMP and label (LBL) instructions available (see Figure 3-42). These can be used
to reduce program scan time by omitting a section of program until it is needed. It is pos-
sible to jump forward and backward in the ladder. The programmer must be careful not
to jump backward an excessive amount of times. A counter, timer, logic, or the program
scan register should be used to limit the amount of time spent looping inside a J]MP/LBL
instruction; otherwise the watchdog time may be exceeded and a major fault will occur.
If the rung containing the JMP instruction is true, the CPU skips to the rung contain-
ing the specified label and continues execution. You can jump to the same label from one
or more JMP instructions.

Motor_Over_Temp Alt_1
1 E (IMP)—
Sensor_1 Fault_5 Motor_1
JC 1E Y
1C 1/'C)
Alt_1 Alarm_2
—{ LBL] ®.

Figure 3-42 Use of JMP and LBL instructions.

QUESTIONS

What is a contact? A coil ?

Explain the term normally open (XIC, examine if closed).

Explain the term normally closed (XIO, examine if open).

What are some uses of normally open contacts?

Explain the terms true and false as they apply to contacts in ladder logic.

ISR

If you were designing a fence with a gate for a robot cell, what kind of real-world

switches would you use: normally open or normally closed?

7. Design a ladder that shows series input (AND logic). Use X5, X6, and AND NOT
(normally closed contact) X9 for the inputs and use Y10 for the output.

8. Design a ladder that has parallel input (OR logic). Use X2 and X7 for the contacts.

9. Design a ladder that has three inputs and one output. The input logic should be: X1

AND NOT X2, OR X3. Use X1, X2, and X3 for the input numbers and Y1 for the

output.

CHAPTER 3—LADDER LOGIC PROGRAMMING 65

10.

11.

12.
13.
14.

Design a three-input ladder that uses AND logic and OR logic. The input logic
should be X1 OR X3, AND NOT X2. Use contacts X1, X2, and X3. Use Y12 for the
output coil.

Design a ladder in which coil Y5 will latch itself in. The input contact should be X1.
The unlatch contact should be X2.

What is a JMP instruction used for?
What is a SBR instruction used for?
What is a RET instruction used for?

Examine the rungs below and determine whether the output for each is on or off. The
input conditions shown represent the states of real-world inputs.

15.

16.

Real-World Input State of Real-World Input
Inp_1 True
Inp_2 True
Inp_3 True
Inp_4 False
| np1 Inp2 Inp3 Inp_d Out_1 |
5 E E F JrF £
L % C L5

Real-World Input State of Real-World Input
Inp_1 True
Inp_2 True
Inp_3 True

Ry |

Le

| Inp
9
1

mis
1
T
5
L-II-U
e,

66

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

17.

18.

19.

Real-World Input State of Real-World Input
Inp_1 True
Inp_2 True
l np1 Inp_2 Out_1
1€ I E il
l JC ¥ L2
Real-World Input State of Real-World Input
Inp_1 True
Inp_2 False
Inp_3 True
| np1 Inp2 Inp_3 Out_1
AL I E 1L Vi
| JC HE 1r L2
Real-World Input State of Real-World Input
Inp_1 True
Inp_2 True
| p 1 Ip2 Inp_2 out_1 |
il WE TR £
JE s il JiE { >

CHAPTER 3—LADDER LOGIC PROGRAMMING 67

20.
Real-World Input State of Real-World Input
Inp_1 False
Inp_2 True
Inp_3 True
Inp_1 Inp_2 Out_1
3 E 1E '™
J L L
Inp_3
1L
nllw
21.
Real-World Input State of Real-World Input
Inp_1 True
Inp_2 False
Inp_3 True
Inp_4 True
Inp_1 Inp_2 Out_1
1 1 P
J L L
Inp_3
J L
E i o
Inp_4
1E
JE

68 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

22. Write ladder logic for the application below. Your logic should have a start/stop
circuit to start the application and should assure that the tank does not run empty or
overflow. Use the I/O names from the table for your logic.

Inflow
Pump []Hi_Level_Sensor
Outflow
To
Low_Level_Sensor
Process I:l - B
I/0 Name Function
Start Real-world Switch
Stop Real-world Switch
Run BOOL
Pump Real-world Discrete Output

Hi_Level Sensor

Real-world Discrete Sensor

Low_Level Sensor

Real-world Discrete Sensor

CHAPTER

Timers and Counters

OBJECTIVES

On completion of this chapter, the reader will be able to:

= Describe the use of counters and timers.
» Understand ControlLogix counter and timer tags and their members.
= Utilize status bits from timers and counters in logic.

* Define terms such as delay-on, delay-off, preset, accumulated, retentive, cascade,
and so on.

Correctly use counters and timers.

TIMERS

Timing functions are very important in PL.C applications. Timers serve many functions
in logic. They can be used to control when events occur. They can be used to delay ac-
tions in logic. They can also be used to keep track of elapsed time. Timers can also be
misused in logic. Whenever possible, real events should be used to control when things
happen in logic. Weak programmers often use timers to make bad logic work. Timers
should be used for logic that requires timed events.

Timers have some typical entries. Timers must have a tagname. Timers must typi-
cally have a time base and a preset value. Figure 4-1 shows a typical timer. The timer’s
tagname in Figure 4-1 is Cycle_Time. The Preset is 10000.

70 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

TON
Timer On Delay —EN
Timer Cycle_Time —DNN>—
Preset 10000 «
Accum 5507

[0 -
m I,Q?
o
=

Figure 4-1 A CLX timer.

Preset

Timers have a preset (PRE) value that must be set by the programmer. The PRE
value can be thought of as the number of time increments the timer must count
before changing the state of the output. ControlLogix timers have a time base in
milliseconds.

The actual time delay would equal the PRE value multiplied by the time base. For
example, if the PRE value is 10000, this would be a 10-second time (10000 * 1 ms = 10
seconds).

The PRE value is stored in the timers tag member named .PRE. In the example
shown in Figure 4-1 the tag member would be Cycle_Time.PRE. This enables the PRE
value to be changed in the ladder logic. Timers have one input that enables the timer.
When this input is true (high), the timer will accumulate time in the accumulator.

Timers can be retentive or nonretentive. Retentive timers do not lose the accumu-
lated time when the rung conditions go false. A retentive timer retains the accumulated
time until the line goes high again. When the rung goes true again, the retentive timer
adds time to the accumulator. Retentive timers are also called accumulating timers. They
function like a stopwatch. Stopwatches can be started and stopped multiple times and
still retain their timed value. There is a reset button on a stopwatch to reset the time to
zero. A RES instruction is used to reset a retentive timer.

Nonretentive timers lose the accumulated time every time the rung conditions
become false. If the rung conditions become false, the timer accumulated time goes
to zero.

Timer-On-Delay Instruction

The TON instruction produces an on-delay timer. An on-delay timer can be used to turn
an output on after a delay. An on-delay timer begins accumulating time when the rung
conditions become true. If the accumulated time in the timer becomes equal to or greater
than the preset time, the timer done (DN) bit is set to a 1. Figure 4-2 shows an example
of an on-delay timer.

The DN bit is the most commonly used timer status bit. The timer DN bit is false
until the accumulated (ACC) value is equal to the PRE value. If the ACC value is greater
than the PRE value, the DN bit is true. The DN bit remains set until the rung goes false or
a reset instruction resets the timer. ControlLogix uses milliseconds (ms) for the time base.
The preset in this example is 10000. This would be a 10-second time (10000 * 1 ms = 1
second).

CHAPTER 4—TIMERS AND COUNTERS 71

TON
Timer On Delay —EN
Timer Cycle_Time —DN>—
Preset 10000 «
Accum 5507

[0 -
m "c_,?
o
=

Figure 4-2 Use of an on-delay timer in ControlLogix. Note that the accumulated time has not
reached the PRE value so the DN bit is false yet.

Timer Status Bits

Timers have special status bits that can be used in ladder logic. These are also called tag
members. Figure 4-3 shows the typical timer bits.

EN The timer enable bit indicates that the TON instruction is enabled.
DN The timer done bit is set when ACC = PRE.
TT The timer timing bit indicates that a timing operation is in process.

Figure 4-3 Timer bits.

The PRE value can also be used in logic. For example, Cycle_Time.PRE would ac-
cess the PRE value of the timer named Cycle_Time. The PRE value would be a double
integer (DINT). The PRE value can also be modified in logic.

Consider Figure 4-4. The timer is named Cycle_Time. The PRE value is 10000 ms.
The timer enable (EN) bit becomes true when the rung conditions are true. The EN
bit stays set until the rung goes false or a reset instruction resets the timer. The EN
bit indicates that the timer is enabled. The EN bit can be used for logic. For example,
Cycle_Time.EN could be used as a contact in a rung.

When the accumulated time in this timer reaches 10000, the DN bit will be true until
the rung conditions go false or the timer is reset by a reset instruction. In this example
the accumulated time has reached 10000 and the DN bit is true; this turned the output
named Mix_Motor on.

Cycle_Start TON
J E Timer On Delay —EN>—
Timer Cycle_Time [=DN>=
Preset 10000 «
Accum 10000 «
Cycle_Time DN Mix_Motor
3 B £
J L LN

Figure 4-4

Use of a timer DN bit in ControlLogix.

72

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Another useful status bit is the timer timing (TT) bit. The TT bit is set to true when
the rung conditions become true. The TT bit remains true until the rung goes false or the
DN bit is set (accumulated value equals PRE value). Figures 4-5 and 4-6 show the use
of the timer TT bit. In the first figure the ACC value has not reached the PRE value, so
Cycle_Time.TT is true. The second figure shows that the TT bit is false when the ACC
value reaches the PRE value.

Cycle_Start TON
3 E Timer On Delay =N
Timer Cycle_Time —DN>—
Preset 10000 €
Accum 9950 &
Cycle_Time EN Mix_Motor
= & s)
9 E S
Cycle_Time.TT Fan
- - =t
3. ~
Figure 4-5 Use of timer EN and TT (true) bits in ControlLogix.
Cycle_Start TON
] [Timer On Delay =EN>=——
Timer Cycle_Time F=0DN>=
Preset 10000 &
Accum 10000 &
Cycle_Time EN Mix_hotor
3 B .y
= I N A
Cycle_Time.TT Fan
1C o)
1 C ~

Figure 4-6 Use of timer EN and TT (false) bits in ControlLogix.

Figure 4-7 shows the tag members for the ControlLogix Part_Timer tag. Note that
the preset (PRE) member and the accumulated (ACC) member are DINT types. The
rest of the members are Booleans (BOOLs).

CHAPTER 4—TIMERS AND COUNTERS 73

0000 D
o
0
. BC
o
o
0 B
o8
o

Figure 4-7 Tag members for a timer named Part_Timer in CL.

Figure 4-8 shows an example of using logic to change the PRE value of a timer on the
basis of conditions. In this example, if Product_A bit is set, the PRE value is set to 10000.
If Product_B is set, the PRE value is set to 20000.

Cycle_Start TON
] Timer On Delay M=
Timer Cycle_Time N>—
Preset 10000
Accum 10000
Product_A, WO
—q P Move
Source 10000
Dest Cycle_Time PRE
10000 €
Product_B WO
J E Move
Source 20000

Dest Cycle_Time PRE
10000 «

Figure 4-8 Use of move (MQOV) instructions to change the PRE value in a timer.

74 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

ACC Value Use

The ACC value can also be used by the programmer. Figure 4-9 shows the use of a
limit (LIM) instruction to evaluate whether the ACC value of the timer is between
the Low Limit of 0 and the High Limit of 1250. The Test value of Part_Timer.ACC
would access the ACC value of timer Part_Timer. ACC. In this example the Test
value is between the Low and High Limit so the instruction is true and the output is
energized.

Part_Sensor TON

3 E Timer On Delay =END=—
Timer Cycle_Time —DN>—
Preset 10000 &
Accum 1020 &

LIM Fan_Mator

Limit Test (CIRC) — = ——

Lowy Limit 0

Test Cycle_Time ACC

1020 &
High Limit 1250

Figure 4-9 Use of the timer ACC value in ControlLogix.

Figure 4-10 shows the use of a reset (RES) instruction to reset a timer’s ACC value
to zero. If contact Inp_1 becomes true, the value of timer Part_Timer. ACC will be set
to zero.

1 Cycle_Time |
. [{RES> |

Figure 4-10 Use of a CLX RES instruction to reset a timer’s accumulated time.

Figure 4-11 shows an example how the timer DN bit (Part_Timer.DN) can be used
to reset the timer accumulator to zero every time the timer accumulated time reaches the
PRE value. This would turn Part_Timer.DN on for one scan. This can be used to make
things happen at regular intervals. For example, this could be used to execute an instruc-
tion or some logic every 10 seconds.

CHAPTER 4—TIMERS AND COUNTERS 75

Inp_1 Cycle_Time. DN TON
1 F 4/ E Timer On Delay =N
Timer Cycle_Time —DhN>—
Preset 10000 «
Accum 1250 €

Figure 4-11 Use of a timer DN bit to reset the timer’s accumulated time to 0 every time
it reaches 10000 (the PRE value). The timer DN bit would be true for one scan every
10 seconds.

Timer-Off-Delay (TOF) Instruction

The TOF instruction can be used to turn an output coil on or off after the rung has been
false for a desired time.

Let’s use a nonindustrial example to understand the function of an off-delay timer.
Think of a bathroom fan. It would be nice if we could just push a momentary switch and
have the fan turn on for 2 minutes and then automatically shut off. In the example shown
in Figure 4-12, the output (fan) turns on instantly when the input (switch) is momentarily
turned on. The timer counts down the time (timed out) and turns the output (fan) off.
This is an example of an off-delay timer.

Figure 4-12 shows the use of an off-delay timer in CL. When the Cycle_Start
contact becomes true, the timer DN bit becomes true. Note in the second rung in
Figure 7-1 that Cycle_Time.DN is on, turning the output (Fan_Motorl) on. The
timer’s DN bit will stay on forever if the Cycle_Start contact remains true. When
Cycle_Start becomes false, it starts the timer timing cycle. When the rung goes
false, the timer begins accumulating time. When the accumulator reaches 8000 ms,
Cycle_Time.DN will become false. Figure 4-13 shows that when the accumulated
time reaches 8000, Cycle_Time.DN is false.

A TOF instruction creates a delay-off timer. The timer turns on instantly, counts
down time increments, and then turns off (delay off).

Cycle_Start TOF
3 E Timer Off Delay = EN =
Timer Cycle_Time =DMy
Preset 10000 «
Accum 8000 &
Cycle_Time.DN Fan_Motor
=l B T
3 B N A

Figure 4-12 Delay-off timing circuit. If the contact named Cycle_Start closes, delay-off timer
Cycle_Time.DN immediately turns on; this turns on the output named Fan_Motor1.

76 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Cycle_Start TOF
1 E Timer Off Delay —EN>—
Timer Cycle_Time —DhN>—
Preset 10000 «
Accum 10000 &
Cycle_Time.DN Fan_Motor
[N %
% B I L/

Figure 4-13 Delay-off timing circuit. When the timer accumulated time reaches the preset
time, it will turn off; this turns Fan_Motor1 off also.

An off-delay timer starts to accumulate time when the rung becomes false. Off-
delay timers accumulate time until the ACC value equals the PRE value or the rung
becomes true. The off-delay timer EN bit is set when the rung becomes true. The EN
bit is reset when the rung becomes false. If the rung becomes false and the ACC value
is less than the PRE value, the TT bit is set to true. If the rung becomes false, the DN
bit is reset (ACC = PRE), or a reset (RES) instruction resets the timer, the TT bit is
reset to false.

Retentive-Timer-On Instruction

The RTO instruction is used to turn an output on after a preset time has accumulated
(see Figure 4-14). The RTO timer is an accumulating timer. It retains the present
ACC value when the rung goes false. The RTO timer retains the accumulated time
even if power is lost, you switch modes, or the rung becomes false. A RES instruc-
tion must be used to zero the ACC value in an RTO timer. The RES instruction is
programmed in another rung with the same timer name as the RTO timer you wish
to reset.

Inp_1 RTO

1 F Retertive Timer On (N
Timer Part_Timer —Dh>—
Preset 10000
Accum 4000

Figure 4-14 Use of an RTO timer.

The table in Figure 4-15 shows the timer instructions and which languages they can
be used in.

CHAPTER 4—TIMERS AND COUNTERS 77

m If you need to Available in

TON Time how long a timer is enabled Ladder logic
TOF Time how long a timer is disabled Ladder logic
RTO Accumulate time Ladder logic
TONR Time how long a timer is enabled with Structured text and
a built-in reset input function block
TOFR Time how long a timer is disabled with a Structured text and
built-in reset input function block
RTOR Accumulate time with built-in reset input Structured text and
function block
RES Reset a counter or a timer Ladder logic

Figure 4-15 Timer instructions.

COUNTERS

Counting is a very common function in industrial applications. Actions must often be
based on product counts. In case packing, for example, there might be 4 rows of 6 cans
making up one case of product. In this simple example, we might need to count to 6 for
the 6 products in each row and then 4 for the number of rows in a completed case. Ac-
tions would be based on each count. We would also need another counter to count the
number of cases that had been produced. We might need another down counter to show
how many more need to be produced to complete the order.

Up counters and down counters are available. Up/down counters are also available in
some ControlLogix languages. For example, if we were counting the number of filled and
capped bottles leaving a bottling line and we were tracking how many parts remain in a
storage system, we might use a up/down counter.

Down counters cause a count to decrease by 1 every time there is a pulse. Up/down
counters can be used to increase or decrease the count depending on inputs.

Counters have a counter name or address, a PRE value, an ACC value, and several
other tag members.

Logic can use counter status bits, PRE values, and ACC values. Bits such as CU, CD,
DN, OV, or UN can all be used for logic. The PRE value and the ACC value can also be
used in logic.

Count-Up (CTU) Counter

Figure 4-16 shows the use of a CTU counter. Each time contact Part_Counter makes a
transition to true, 1 is added to the ACC value of the counter. Note that in this figure the
accumulated value is less that the PRE value, so the DN bit of the counter is false in the
second rung. The counter’s count-up (CU) bit is true, however, because the counter’s
rung is true.

78

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Part_Cownt : LTU
—f’ — ' it Uk [— —
Gt L Lounter § (DM
iueset 1
AT §e
Part_Counter DN Pach Oyl
15
Part_Cowrter CU Pach _Cyche
pra— — —t

Figure 4-16 Use of the DN and CU bits in CL logic. Note that Part_Counter.CU is true and
Part_Counter.DN is false because the ACC value is less than the PRE value.

Figure 4-17 shows the use of a CTU counter in CL. Note that in this figure the
ACC value reached the PRE value (12), so the DN bit of the counter is true in the
second rung. The counters count-up (CU) bit is now false, because the counter’s rung
is false.

Part_Count CTU
] F Count Up —(CU——
Counter Part_Counter =DM
Preset 12 &
Accum 12 &
Part_Courter DN Pack_Cylinder
s B P
1C LD
Part_Courter .CU Pack_Cycle
S £
3L ~ A

Figure 4-17 Use of the DN and CU bits in CL logic. Note that Part_Counter.DN is true because
the ACC value has reached the PRE value. Part_Counter.CU is true anytime the rung condition
in front of the counter is true. In this example the rung is false so the CU bit is false.

Figure 4-18 shows the use of a CTU counter’s ACC value in a ladder diagram.
Each time input Part_Sensor makes a false-to-true transition, the counter ACC value
is incremented by 1. The ACC value of the counter is being used in the equal (EQU)
math instruction in the second rung to turn on an output when the ACC value reaches 6.

CHAPTER 4—TIMERS AND COUNTERS 79

This instruction just compares two values (Source A and Source B). If they are equal the
EQU instruction is true making the rung true in this example. Note that math instruc-
tions will be covered in detail in Chapter 7. Note that a RES instruction can be used to
reset the value of a counter accumulator.

Part_Sensor CTL

J E Count Up —CW—
Counter Part_Gty —DN>—
Preset 12 €
Accum 3

EQU Pack_Cylinder
Equal <
Source & Part_Gty ACC
3 €
Source B B

Figure 4-18 Use of a CTU accumulated value.

Count-Down (CTD) Counters

A CTD counter can be used to count down from a preset number. Figure 4-19 shows an
example. Although it seems illogical, when the ACC value equals or is greater than the
PRE value, the DN bit will be energized, just as with a CTU counter. The CTD counter
is almost always used in conjunction with a CTU counter as an up/down counter by as-
signing the same tag name to them both.

Part_Count CTD
j [Court Down —{CD
Counter Down_CTR —DN>—
Preset 12 &
Accum 3€

Figure 4-19 Use of a CTD counter.

A counter that can count up or down is also available in two CLX programming
languages. The count up/down (CTUD) counter is used to count up and count down.
It is not available in ladder logic. It can be used in structured text and function block.
Figure 4-20 shows the counter instructions that are available and which languages they
can be used in.

80 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

CTU Count up Ladder logic
CTD Count down Ladder logic
CTUD Count up and count down Structured text and function block
RES Reset a counter or a timer Ladder logic

Figure 4-20 Counter instructions.

QUESTIONS

What is an on-delay timer?

What is an off-delay timer?

What is the time base for a CL controller?

What is the PRE value used for in a timer?

What is the ACC value used for in a timer?

Describe two methods of resetting the ACC value of an on-delay timer to 0.
What does the term retentive mean?

Give an example of how the TT bit for an on-delay timer could be used.

© P> Utk W

Give an example of how the EN bit for on- or/and off-delay timer could be used.

,_
=

Give an example of how the DN bit for an off-delay timer could be used.

—
—

. In what way are counters and timers very similar?

. What is a CTU counter?

. What is a CTD instruction?

. What is a CTUD instruction?

. What languages are CTUD instructions available in?

= e
D Ul =~ W DO

. How can the accumulated count be reset in a counter?

—
=1

Complete the descriptions in the tables below.

ControlLogix Timers Description of Address
T_1L.PRE

T_1.ACC

T_1.DN

T_1.TT

T_1.EN

CHAPTER 4—TIMERS AND COUNTERS 81

ControlLogix Counters

Description of Address

CNT_1.PRE

CNT_1.ACC

CNT_L.DN

18. Write a ladder logic for the following application:

This is a simple heat treat machine application. The operator places a part in a fixture,
then pushes the start switch. An inductive heating coil heats the part rapidly to 1500
degrees Fahrenheit. When the temperature reaches 1500, a discrete sensor’s output be-
comes true. The coil turns off, and a valve is opened which sprays water for 5 seconds on
the part to complete the heat treatment (quench). The operator then removes the part,
and the sequence can begin again. Note there must be a part present or the sequence

should not start.

/0 Type Description

Part_Present_Sensor Discrete Sensor used to sense a part in the fixture

Temp_Sensor Discrete Sensor whose output becomes true when
the temperature reaches 1500 degrees
Fahrenheit

Start_Switch Discrete Momentary normally open switch

Heating_Coil Discrete Discrete output that turns coil on

Quench_Valve Discrete Discrete output that turns quench valve on

This page intentionally left blank

CHAPTER

Input/Output Modules
and Wiring

OBJECTIVES

On completion of this chapter, the reader will be able to:

= Define terms such as discrete, digital, analog, resolution, producer,
consumer, and so on.

» Describe types of digital I/O modules.

= Describe types of analog I/O modules.

* Find the resolution for an analog module.

= Describe how analog modules are calibrated.

= Wire digital and analog modules.

1/0 MODULES

There are a wide variety of modules available for CLX systems. Modules are available for
digital and analog I/O, communications, motion, and many other purposes. CLX modules
have more capability than modules in most PLC systems. Modules are configurable and
provide troubleshooting and fault information to the controller.

Every I/O module in a CLX system must be owned by a CLX controller to be used.
The controller that owns the module stores configuration data for every module that
it owns. Modules can be located in the same chassis as the controller or remotely. The
controller that owns the module sends the I/O module configuration data to define the
module’s behavior. Each individual ControlLogix I/O module must continuously maintain
communication with the controller that owns it to operate normally. Output modules are

84

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

limited to a single owner. Only one controller can own an output module. Input modules
can have multiple owners. If multiple owners are connected to the same input module,
the controllers must have identical configurations for the module.

Modules are configured when you add them to a ControlLogix project. Lo-
cal and remote modules are configured by the user. The I/O configuration portion of
RSLogix5000 generates the configuration data for each I/O module in the control sys-
tem on the basis of how the module is configured in the project. A remote chassis
contains the I/O module but not the module’s owner-controller. Remote chassis can be
connected to the controller via scheduled ControlNet or EtherNet/IP networks. Con-
figuration data for modules is transferred to the controller during program downloads
and is then transferred to the appropriate I/O modules. When a module is added to a
project, tags are created that allow the user to access I/O information, fault information
and configuration data.

Any controller in a system can listen to the data from any I/O module even if the con-
troller does not own the module. During module configuration the user specifies one of
several Listen-Only modes in the Communication Format field.

Choosing a Listen-Only mode option allows the controller and module to establish
communications without the controller owning the module. Remember that only the
controller that owns a module sends configuration data to the module.

Controllers using the Listen-Only mode receive data multicast from the 1I/0
module as long as the connection between the owner-controller and the I/O module
is maintained. If the connection between the owner-controller and the module fails,
the module stops multicasting data. Connections to all listening controllers are also
broken.

DIGITAL MODULES

Digital modules are also called discrete modules. Discrete means that each input or
output has two states: true (on) or false (off). Most industrial automation devices are
discrete.

Digital Input Modules

Digital input modules are used to take input from the real world. Inputs to a
discrete module are provided by devices such as switches or sensors that are either on
or off.

Input and output modules must be able to protect the CPU from the real world.
Assume an input voltage of 110 VAC (volts alternating current). The input module must
change the 110 VAC level to a low-level direct current (DC) logic level for the CPU.
This is accomplished through opto-isolation. An opto-isolator uses a phototransistor. The
LED in the phototransistor is controlled by the input signal. The light from the LED falls
on the base of the phototransistor and turns the transistor output on (allows collector/
emitter current flow). Figure 5-1 shows how this is done for alternating current (AC)

CHAPTER 5—INPUT/OUTPUT MODULES AND WIRING 85

input modules. The light totally separates the real-world electric signals from the PL.C
internal electrical system. Figure 5-2 shows how opto-isolation is done for a DC input
module.

AC Input
Module

@»‘M

Sensor

Orpto-Isolation

Figure 5-1 Opto-isolation for an AC input module. Note in the figure that the AC input signal
is transmitted via an LED to a phototransistor. The output of the photosensor is a low-level
DC signal for the CPU.

DC Input
Module

Sensor A "k

Opto-Isolation

Figure 5-2 Opto-isolation for a DC input module.

All ControlLogix I/O modules may be inserted and removed from the chassis while
power is applied. This is often called hot swapping. This feature allows greater availability
of the overall control system because, while the module is being removed or inserted,
there is not any additional disruption to the rest of the controlled process. Figure 5-3
shows some of the features of a CLX module. Note the Locking tab on the front of the
module. The Locking tab locks the RTB or cable onto the module.

LED Status Information

ControlLogix digital I/O modules provide hardware and software indicators when a
module fault occurs. Each module’s LED fault indicator and RSLogix 5000 software
will graphically display the fault. ControlLogix diagnostic digital I/O modules have an

86 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

ControlLogix VO Module
T——
A L l] nicat 8 Removable
cators—e=|
a - 8| Locking tab T%Tclia'
5= —1 U/ = ~
= [r -1 /'. e | D
= [o o ! el
) e o i g
ﬁ Connector: e @ i ®'
[botoe e ® o|fSushr i
guides s keying 1 1
e ® O e (|9 (O
e o | |
o o° | =]
[le o 9 1©f
] — N® ®f]
< \ N
S
= | b O

E

Figure 5-3 A typical I/O module. (Courtesy of Rockwell Automation, Inc.)

LED indicator on the front of the module that enables a technician to check the health
and operational status of the module. The LED displays vary for different types of
modules. Input modules typically have LEDs for monitoring the inputs. If the input
is true, the LED is energized. Some modules also have additional LEDs for trouble-
shooting. Figure 5-4 shows examples of three different input modules. The middle one
and the one on the right have additional diagnostics.

The following statuses can be checked with the LED indicators:

I/O status LEDs- This yellow display indicates the on/off state of each input.

Module status LED- This green display indicates the module’s communication
status.

Fault status LED- This display is only found on some modules and indicates the
presence or absence of faults.

Fuse status LED- This display is only found on electronically fused modules and
indicates the state of the module’s fuse.

CHAPTER 5—INPUT/OUTPUT MODULES AND WIRING 87

) DCINPUT
3 «z) DCINPUT &) ACINPUT
2 7) 8
ST01“3156'§|5| ST01234567 1/0 State ST01234567 04— Module
ST890LDRBKIS FIT01234567 0 1/0 Fault FITO1234567 ‘ld Status
8 sTaonnEBUE ¢ B

ATBSWNEDHE

DIAGNOSTIC DIGNOSTIC

Figure 5-4 A regular input module on the left and two diagnostic input modules. Note that
the module on the left only shows the status for each input whereas the diagnostic modules
also show the fault status for each input. Note also the location of the module’s status LED.
All modules have the Module Status LED. (Courtesy of Rockwell Automation, Inc.)

Figure 5-5 has a table that shows the states for the LED status indicator on input
modules.

Green oK Inputs are being multicast and are in a None.
normal operation state.

Flashing green | OK Module passed internal diagnostics but | None.
is either inhibited or is not multicasting.
Flashing red oK Previously established communication Check the controller and
has timed out. chassis communication.
Red oK Module must be replaced. Replace the module.
Yellow 1/O state The input is active. None.
Red 1/O fault A fault occurred for this point. Check this point at the
controller.

Figure 5-5 Status indicators for input modules.

Keying Modules

Many PLCs have had the capability to key I/O modules mechanically. The user
would attach pegs or plastic keys to modules and the matching configuration to a rack
slot. Each type of module would have a specific key pattern. This prevents putting
the wrong type of module in a slot. For example, an output module could not be in-
serted in an input slot. This protects the application from replacing a module with the
wrong type.

88

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Electronic Keying

ControlLogix PLCs have electronic keying. Electronic keying enables the ControlLogix
controller to control what modules belong in the various slots of a system. Electronic key-
ing is much more powerful and configurable than mechanical keying.

When a module is configured the user can choose Exact Match, Compatible, or Dis-
able keying. Exact Match keying would require an exact match of the module and also
the firmware version of the module be the same as the one it was replacing. Compatible
would allow any module that would be compatible. With ControlLogix digital I/O mod-
ules, the module can emulate older revisions. The module will accept the configuration
if the configuration’s major/minor revision is less than or equal to the physical module’s
revision. For example, if the configuration contains a major.minor revision of 2.7, the
module inserted into the slot must have minor revision of 2.7 or higher for a connection
to be made. Disable keying allows any module to be installed in the slot, whether it is the
correct replacement or not.

Removable Terminal Blocks

ControlLogix modules have plug-on wiring terminal strips that can be mechanically
keyed. These are called Removable Terminal Blocks (RTBs) for ControlLogix PLCs. All
wiring is connected to the RTB. The RTB is plugged onto the actual module. If there is
a problem with a module, the entire RTB is removed, a new module inserted, and the
RTB is plugged into the new module, without any rewiring. A module can be replaced
in a very short time, thus reducing downtime. This is very important when one consid-
ers the cost of a system being down. Keying the RTBs also assures that the technician
cannot install the wiring harness on the wrong module. Figure 5-6 shows how a wiring

harness is keyed.
-— Wedge-shaped tab
Iy

\’j

20851-M

Figure 5-6 Keying an RTB. (Courtesy of Rockwell Automation, Inc.)

CHAPTER 5—INPUT/OUTPUT MODULES AND WIRING 89

Time-stamping Inputs

The system clock can be used to time-stamp inputs and schedule outputs.

ControlLogix controllers generate a 64-bit Coordinated System Time (CST) for their
chassis. The CST is a chassis-specific time that is not synchronized with or connected to
the time generated over ControlNet to establish a network update time (NUT). Digital
input modules can be configured to access the CST and time-stamp input data with the
value of the CST when that input data changes state.

Time-stamping for a Sequence of Events

The CST can be used to establish a sequence of events occurring at a particular input
module point by time stamping the input data. To determine a sequence of events, you
must

Configure the input module’s communications format to CST time-stamped input data

Enable change of state (COS) for the input point where the sequence will occur

Use time-stamping on only one input point per module. Disable COS for all other
points on the module, because only one CST value is returned to the controller
when any input point changes state.

If multiple input points are configured for COS, the module generates a unique CST
each time any of those input points changes state, as long as the changes do not occur
within 500 ps of each other. If multiple input points, configured for COS, change state
within 500 ps of each other, a single CST value is generated for all of them. This makes it
appear that they all changed at the same time.

Rolling Time Stamp

Every module maintains a rolling time stamp. This rolling time stamp is not related to the
CST. The rolling time stamp is a continuously running timer that counts in milliseconds.

When an input module scans its channels, it also records the value of the rolling time
stamp at that time. The user’s program can use the last two rolling time stamp values to
calculate the interval between the receipts of data or the time when new data has been
received. For output modules the rolling time stamp value is only updated when new val-
ues are applied to the digital-to-analog converter.

Input Wiring

Figure 5-7 shows an example of the wiring of a CLX DC input module. Note that the
module must be connected from the negative side of the power supply to the ground
terminals of the module. The positive side of the power supply is not directly connected
to the module. Positive is connected to one side of the inputs. The other side of each
input connects to the desired input terminal. In this example, when the switch is closed,
there is a complete series path from the positive side of the supply through the switch to
the input terminal and then to the ground on the module and finally back to the negative

side of the supply.

90 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

- =
o IN-1 ILH@ q@ I.\I-D——o_]_o—
Daisy chain o [HIGB qu B
| |l |
1 | e ™
=G.-\‘D-c Jﬂ@ g@ GZ\'Ii
o | I)| ot
Group 1 IN-13 Ilu‘@ q@ N-12 Group 1
IN-15 IH[@_}-) ﬂ@ IN-14
- o | D[| oo
- L=
0C COM |

Figure 5-7 A wiring diagram for a ControlLogix sinking digital input module. (Courtesy of
Rockwell Automation, Inc.)

Figure 5-8 shows a wiring diagram for a Rockwell input module. It is a good idea
to first determine what the module requires for power before we worry about the input
wiring. The power supply is not directly connected to the module shown in Figure 5-10.
There is a direct connection from the negative side of the power supply to the module.
The negative is connected to one of the grounds (common). Note also that the grounds
are wired together to make them all common.

Two inputs are shown on the right of the module. The top switch is a normally open
switch. The right side of the switch is connected to the + side of the power supply. The left
side of the switch is connected directly to the desired input terminal (0 in this example).

The bottom switch symbol means that this switch is a limit switch. It is a normally
closed switch that is held in the open position in this diagram. Note that the left sides of
the switches are connected to input terminals and the right sides of the switches are con-
nected to positive DC.

Sinking versus Sourcing Modules

Input modules can be purchased as either sinking or sourcing. The easiest way to understand
this is to remember that a sinking PLC input module would require a positive input signal.
For example, if we have a sensor that has a positive output signal (sourcing), we would need
a sinking PLC input module. Figure 5-9 shows an example of a sinking PLC input module.

CHAPTER 5—INPUT/OUTPUT MODULES AND WIRING 91

| Tl o
e | | IEEJEE] ™
por | P HEDED]| B |
7 | IR ieD) | ™
= oxo4 | IED I | oxpe
s | B[R e] ocTod
o1l | [HERTIED)] | o
Groupl | IN.13 .GB“@ DG | Group
IN-15]t@]@ IN-14
- oo | [IEDJIED)]| evor|
T
oc comt |

Figure 5-8 CLX DC digital input module wiring.

(Courtesy Rockwell Automation Inc.)

Sinking
Input
Module
Sourdng
Sensor @ Input 0
@
Sourdng e
u
| Sensor @ Irput 3
@
@
+_| Power 2
=T Supply o
@Common
4—
Current Flow

Figure 5-9 Sinking input module. Note that the sensors have sourcing (positive) outputs.

If we have a sensor or device with negative output, we would need a sourcing PLC
input module (see Figure 5-10). This often occurs when connecting drives, vision, or
robot outputs to a PLC. You must be careful to check the output polarity required and

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

match it to the correct type of PLC module. Remember opposites attract. If you have a
sensor with a sourcing (positive) output, you need a sinking input module. If you have a
sensor with a sinking (negative) output, you need a sourcing PLC input module.

Sourcing
Input
Module
Sinkin
Senso? @ Input 0
@
@
Sinking
| Sensor @ Input 3
@
@
- 1 Power @
4] Supply o
@Common
Current Flow

Figure 5-10 Sourcing input module. Note the sensors have sinking (negative) outputs.

When two-wire sensors are used there is always a small leakage current that is re-
quired for the sensor’s operation. This does not normally cause a problem because the
leakage current is very small and not enough to be seen as an input by the input card.
In some cases, however, this leakage current is enough to trigger the input of the PLC
module. If leakage current is seen as an input, a resistor can be added that will bleed the
leakage current to ground (see Figure 5-11). When a bleeder resistor is added, most of
the current goes through it to common. This assures that the PLC input is only triggered
when the sensor’s output is on.

Input
: Module
el —to o
@
@
@
)
@
+ | Power @
=T Supply @
—MA—— Common
ba |
Bleeder
Resistor

Figure 5-11 Use of a bleeder resistor.

CHAPTER 5—INPUT/OUTPUT MODULES AND WIRING 93

Discrete Output Modules

Discrete output modules are used to turn real-world output devices off or on. Output
modules are available for AC and DC devices. They are also available in various voltage
ranges and current capabilities. The actual output device used for each output includes
transistors, triac output, or relay output. The transistor output would be used for DC
outputs. Triac outputs are used for AC devices. Transistor-transistor logic (TTL) output
modules are also available.

The current limit specifications for an output module are normally given for each
individual output and as an overall module current limit. Figure 5-12 shows the specifi-
cations for a 1756-OB16E output module. Note that each output has a current limit of
1 ampere. The overall current limit is 8§ amperes. This module has 16 outputs. If each
output were at the maximum current, the module would exceed the overall current limit
(16 *1 > 8). The total current for the module must not exceed the total that the module
can handle. Normally each PLC output will not draw the maximum current, nor will they
all be on at the same time. Consider the worst case when choosing an appropriate output
module.

Output Voltage Range 10-31.2 VDC

Output current rating
Per point 1-A maximum @ 60 degrees C
Per module 8-amp maximum @ 60 degrees C
Surge current per point 2 A for 10 ms each
Minimum load current 3 mA per output

Figure 5-12 Specifications for a 1756-OB16E output module.

Figure 5-13 shows the LED troubleshooting panel from an electronically fused out-
put module. Note the status lights—one for each output and the two fuse LED indicators
(one for outputs 0-7 and one for outputs 8-15).

1756-0B16E

(== DCOUTPUT

ST01234567 d
FUSE X 0
K

STEODNEIIHIE
FUSE I

ELECTROMICALLY FUSED

Figure 5-13 Electronically fused output module. Note the LED indicators for the fuses.
(Courtesy of Rockwell Automation, Inc.)

94

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Many output modules are fused to protect each output. This fuse is normally in-
tended to provide short circuit protection for wiring only to external loads. If there is a
short circuit on an output channel, it is likely that the output transistor, triac, or relay as-
sociated with that channel will be damaged. In that case the module must be replaced or
the output moved to a spare channel on the output module. The fuses are normally easily
replaced. Check the specifications for the particular module. Check the technical manual
for the module to find the correct fuse and procedure.

Output Wiring

Figure 5-14 shows the wiring for a DC output module. One of the first questions when
you are figuring out the wiring for a module is: Does the module require connections to
a power supply? In Figure 5-14 you see that the positive side of the power supply must
be connected to two terminals: DC-0 and DC-1. The negative side of the supply must be
connected to terminals RTN OUT-0 and RTN OUT-1.

Now that we have the module powered correctly, we can examine the wiring of the
outputs. The output devices are connected to an output terminal and then tied to the
RTN OUT (negative) terminals.

Fy —
[OUT-1 u@ wro — /(,
oUT-3 T2
Group 0 OuT-5 I QUT-4 Group0
oUT-7 T UT-6
Daisy chain
toother <——}— DC-0(+) RTN OUT-0
RTBs — - —
ouT-9 T-8
OUT-11 QUT-10 __4_,
wire Goup1 | OUF3 | UT-12 S
OUT-15 D) |our14
E oc-14) | | [(6D [HED)| | Rnw our1 +——9
/)
+ |-

| l DC COM

Figure 5-14 DC output module wiring. (Courtesy of Rockwell Automation, Inc.)

CHAPTER 5—INPUT/OUTPUT MODULES AND WIRING 95

Figure 5-15 shows the wiring for an AC output module. Let’s first examine the
power wiring for the module. L1 from the AC supply is connected to L1-0 and L1-1.
L2 from the AC supply is connected to L2-0 and L2-1. Next let’s look at the wiring for
an output. Each output is connected to an output terminal and tied to terminals 1.2-0

and L2-1.
e —
- s | [EDTIED) | 20
cwees T ——F 9| | TR | om0 +—4
Group0 | L1-0 ﬂ@ H@ ouT-1 Group 0
s | [EBIEB) | o721
:uliltgpw_’ v-o| | |06 |tEb)] | ovr-3
o || IR | v +——1
w1 || D lfep)]| o
u-1| | ED[HED) | oms +—4
Group |19, €| | our.7 | Group?
-1 ED) | L2
T _ 2
TN
] a u

Figure 5-15 AC output module wiring. (Courtesy of Rockwell Automation, Inc.)

Sinking versus Sourcing DC Outputs

Just as with input modules, there are two choices for output: negative output and positive
output. This is often an issue when connecting outputs to other devices such as vision
systems, robots, and so on. The devices might specifically require a positive or a nega-
tive signal for their input. Remember that an output from the PLC becomes an input to
another device.

A sourcing output module supplies a positive signal to an output. Figure 5-16 shows
that each output for a sourcing output module is connected to the output terminal and
the other side of the output is tied to the negative side of a supply.

96 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Sourcing
Output
Module
Output 0 @ %‘2\‘/‘;22 -
@
D —
Outputd @ Snking |
> —p Device
> Currert Flow
/] Power | -
@ Supply 4
Common @

Figure 5-16 AC output module wiring.

Figure 5-17 shows a sinking output module. One side of the output is connected
to an output terminal and the other side of the output is tied to the positive side of a

supply.

Sinking

Output

Module

Output 0 @ S[‘)’g\;i':gg -
o)
%) -

Outputd @ SDOE\Z?(':;@ -
@ Current Flow
o)
7] Power _| +
@ Supply T =

Common @

Figure 5-17 W.iring a sinking output module.

No-Load Detection

Diagnostic output modules also have the capability to sense the absence of field wiring
for every output. This is called no-load detection. No-load detection can also detect a
missing load from each output point in the off state, but only in the off state.

CHAPTER 5—INPUT/OUTPUT MODULES AND WIRING 97

High-Density I/0 Modules

The most common I/O modules have 16 inputs or outputs. A high-density module may
have up to 32 inputs or outputs. The advantage is that there are a limited number of
slots in a PLC rack. Each module uses a slot. With the high-density module, it is possible
to install 32 inputs or outputs in one slot. The only disadvantage is that the high-density
output modules typically cannot handle as much current per output.

Fusing of Digital Output Modules

Many output modules are internally fused to provide protection. Some modules fuse ev-
ery output individually. Other output modules may fuse a group of outputs. For example,
one fuse for the first eight outputs on the module and one fuse for the second eight out-
puts on the module. Other modules may only provide one fuse for the whole module.

Some PLC modules have LEDs to indicate a blown fuse. The fusing may be for each
output, a group of outputs, or one LED for all of the outputs.

Electronic fuses can be reset with the programming software (see Figure 5-18) or by your
logic. Check the appropriate manual to find the correct fusing for your particular module.

- x|

Gerweal | Cormmction Module inbo | Configueaton Dvagroshcs | Back glane

Rt Fletet Fuse lor Pants 0-7

Rezel Fevel Fune for Ponts 815

Figure 5-18 Resetting fuses in the programming software.

ANALOG INPUT MODULES

Analog input modules are designed to take analog information from devices and convert
the analog signal to digital information. The two most common types are current sensing
and voltage sensing. These cards will take an analog current or voltage and change it to
digital data for the PLC.

Analog Module Timing Parameters

When a module resides in the same chassis as the owner-controller, the Real Time Sample
(RTS) and the Requested Packet Interval (RPI) configuration parameters will affect how

98

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

and when the input module multicasts data. The RTS is concerned with how often to
sample, and the RPI deals with how often to multicast (communicate) the information to
other modules.

Real Time Sample (RTS)
This RTS parameter is configured in software by the user. The RTS instructs the module

to perform the following operations (see Figure 5-19):

1. Scan all input channels and store the data into module memory.
2. Multicast the updated channel data and status data to the backplane of the local
chassis.

L —
/ 7
’j On-Beard Memory @ [:] I]
| Status Data N o
Channel Data | «—— —| ChO
Channel Data | «—— —| Ch1
Channel Data | -=—— —| Ch2

Channel Data | <+—— —| Ch3

Channel Data | - | Ch4
Channel Data AL Chs
Timestamp
LJ
\ N
- |

Figure 5-19 RTS sequence for an analog input module. (Courtesy of Rockwell Automation, Inc.)

Requested Packet Interval (RPI)
The RPI is a configurable parameter. The RPI instructs the module to multicast the cur-
rent contents of its onboard memory when the RPI expires. The module does not update
its channels prior to the multicast.

When remote analog I/O modules are connected to the owner-controller on a Control-
Net network, the RPI and RTS intervals define when the module multicasts data within
its own chassis. The RPI value, however, determines how often the owner-controller will

CHAPTER 5—INPUT/OUTPUT MODULES AND WIRING 99

receive the data over the network. Figure 5-20 shows how the data are transferred over a

ControlNet network.
=" <\ .\ B
Owmer-controller ControlNet Bridge module ControlNet Bridge module | utput module
-~ e - — f— \ _' 1

Hisel

1

& | Data sent from owner

[Tat module’sAPIrate "]

—_Jl/

1
i | -
|

S

=l=1=} l
|

J\\

-

@

g | Immediate backpla !
&] transfers to module I

p—

l]/

ol

O]

41360

ContralNet

Figure 5-20 Transfer of I/O data over a ControlNet network. (Courtesy of Rockwell
Automation, Inc.)

Remote Input Modules Connected via EtherNet/IP

When EtherNet/IP is used to connect remote analog input modules to the owner-
controller, data are transferred to the owner-controller in the following manner:

At whichever is faster, the RTS or the RPI, the module multicasts its data within its
own chassis. The Ethernet module in the remote chassis then immediately sends the
module’s data through the network to the owner-controller as long as it has not sent data
within a timeframe that is 1/4 the value of the analog input module’s RPI.

For example, if the RPI = 100 ms, the Ethernet module will only send module data
immediately on receiving it if another data packet was not sent within the last 25 ms.

Analog voltage input modules are available in two types: unipolar and bipolar. Unipo-
lar modules can take only one polarity for input. The bipolar card will take input of posi-
tive and negative polarity. Analog input modules are commonly available in 0 to 10 volts
(unipolar) and —10 to +10 VDC (bipolar).

Current-sensing analog modules are also available. The most common input range is
4 to 20 mA, although other ranges are available.

Some analog modules will accept voltage or current input. These are called combina-
tion modules.

Figure 5-21 shows an example of a module properties screen for a analog input mod-
ule. Note that the input range can be selected. In this example, -10 to 10 VDC was cho-
sen for the input range. This screen also enables you to scale the input values to your
application. In this example the values were scaled —10 VDC input (low signal) should

100 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

equal -10-volt engineering units, and 10 volts input should equal 10 engineering units.
Note also in this example that we are configuring channel 0.

IPORTANT Sat ol B qonfagen st paraetent for ook el o S gage brdors muous 0 e oot gage

Chowne e (Wvwtyy Sefiect e begett Ramge buve
el b b St 3 Callde st o Bua bove
viguedhen St e Dhceh b v
s R e
o el by
Tt e Duyad § e bere
N St e Fiwal T Clhach hovee B0 moum Chuk hwww %0 s0cnge the
o Samgleg peviod beve o et page o seueters a have
1./ vorfand by i awdidle

Figure 5-21 Configuring channels in an analog module. (Courtesy of Rockwell Automation,
Inc.)

Scaling

Scaling enables you to modify the input or output from a module. Scaling can only be
used in the floating-point data format in ControlLogix analog I/O modules. When you
scale a channel, you must choose two points along the module’s operating range and ap-
ply low and high values to those points. For example, imagine an application where you
are using an input module that has a 0- to 21-mA range capability, but your sensor is 4—-
20 mA (see Figure 5-22). You can scale the module so that 4 mA is the low signal and 20
mA is the high signal. Scaling allows you to configure the module to return data to the
controller so that 4 mA returns a value of 0 percent in engineering units and 20 mA re-
turns a value of 100 percent in engineering units.

CHAPTER 5—INPUT/OUTPUT MODULES AND WIRING 101

Module resolution oot bbb e]

OmA

Module scaling represents the . ! 65.536 counts .

data returned from the module : :
to the controller

4mA 20mA
Module scaling 0% in engineering 100% in
units engineering units

Figure 5-22 Scaling an analog module input. (Courtesy of Rockwell Automation, Inc.)

Analog Resolution

Resolution has to do with how closely something can be measured. Imagine a ruler. If the
only graduations on the ruler were inches, the resolution would be 1 inch. If the gradua-
tions were every 1/8 inch, the resolution would be 1/8 inch. The closest we could measure
any object would be I/8 inch. The CPU in a PLC only works with digital information. The
analog-to-digital (A/D) card changes the analog source into discrete steps. The higher the
resolution, the finer the measurement. Another way to think of resolution is in terms of
a pie. If you have people over for Thanksgiving the pie will be divided on the basis of the
number of people. The pie represents what we are measuring (maybe 0-10 volts); the
number of people represents the size of each piece of pie. So the higher the number of
people (bits of resolution), the smaller each piece is.

Resolution is the smallest amount of change that a module can detect. Analog mod-
ules are available in different resolutions. Output modules are typically available in
13-16-bit resolution. A 16-bit module would have 65,536 counts. This can be calculated
by raising 2 to the number of bits the module has. For example a 16-bit module would be
216 or 65,536.

Figure 5-23 shows an example of resolution. In this example the module’s input range
is 0-21 mA. The module is 16 bits; this means that there are 65,536 counts. If we divide
the 21 mA by 65,536, we get the measurement resolution. In this example the resolution
is 0.0003204 mA.

R R T T R R TR R R T R

0mA 21mA

|<— 65,536 counts —>|

21mA/65,536 counts ~ 0.34uA/count

Figure 5-23 Resolution for a specific module. (Courtesy of Rockwell Automation, Inc.)

102

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Field Calibration

ControlLogix analog I/0 modules allow you to calibrate each channel individually or
module-wide. Modules can be calibrated in RSLogix 5000 software.

Calibration is done to make sure a device is making accurate measurements. An-
alog input and output modules are calibrated to improve the module’s accuracy and
repeatability. Calibration procedures are different for input and output modules. Ana-
log modules come calibrated from the factory but they can also be recalibrated. They
can also be calibrated so that they meet the requirements of a particular application.

Analog I/0 modules can be calibrated individually or with the channels grouped to-
gether. Calibration is done to correct any hardware inaccuracies that may be present on
an I/O channel.

A calibration procedure is designed to compare a known accurate standard with the
actual I/O channel’s performance. A linear correction factor between the measured and
the ideal is then calculated and applied to the channel. The calibration correction factor
is applied on every input or output to obtain maximum accuracy.

You must be online to calibrate your analog I/O modules through RSLogix 5000.
When you are online, you can use Program or Run Mode as the state of your program
during calibration. Program Mode is preferred. The module should be in Program Mode
and not be controlling a process when it is calibrated.

To calibrate input modules, you must provide accurate known current, voltage, or ohm val-
ues to the module. When you calibrate output modules, you use a calibrated digital multimeter
(DMM) to measure the output from the module. The table in Figure 5-24 shows the recom-
mended accuracies for calibration instruments. If you calibrate your module with an instru-
ment that is less accurate than those recommended in Figure 5-24, the following may occur:

= Calibration appears to be normal but the module gives inaccurate data during
operation.

= A calibration fault may occur, which forces you to abort calibration.

= The calibration fault bits are set for the channel you attempted to calibrate. The
bits remain set until a valid calibration is completed. In this case, you must recali-
brate the module with a more accurate instrument.

_ RecamnencelnE U ment ranges

1756-IF16 & 1756-1F8 0- to 10.25-V source +/—150 V voltage
1756-IF6CIS 1.00- to 20.00-mA source +/—0.15 A current
1756-1F61 0- to 10.00-V source +/—150_V voltage

1.00- to 20.00-mA source +/—0.15 A current
1756-IR61 1.0 and 487.0_ resistors(1) +/— 0.01%
1756-1T6l & 1756-1T612 —12- to 78-mV source +/—0.3 V
1756-0OF4 1756-0OF8 DMM with accuracy better than 0.3 mV or 0.6 A
1756-OF6VI DMM with resolution better than 0.5 mV
1756-OF6CI DMM with resolution better than 1.0 A

Figure 5-24 Recommended accuracies for calibration equipment for specific modules.

CHAPTER 5—INPUT/OUTPUT MODULES AND WIRING 103

Analog modules freeze the state of each channel and do not update the controller with
new data until after calibration ends. This can be dangerous if active control is attempted
during calibration.

Typical Calibration Procedure

Connect a voltage calibration instrument to the module.

Go to the Calibration page in RSLogix 5000 (see Figure 5-25).

Choose the channels to be calibrated.

Set the calibrator for the low reference signal and apply it to the module. The screen
should display the status of each channel after calibration for the low reference. If all
channels are OK, continue with the calibration. If there is an error, repeat step 4.

5. Set the calibrator for the high reference signal and apply it to the module (see
Figure 5-26). This screen should display the status of each channel after calibra-
tion for the high reference. If all channels are OK, continue. If there is an error
for any channel, repeat step 5.

L e

Tt werwer thiams abuck
thareen anl b g ailde st
S 3 Bugh rebererice d S
range of that calde s en

¥ sl shewt ahat
refererce Lgral o eigmosnd
at e gt

Clich bove b0 cabbmae
S By refarerie

Figure 5-25 Calibration screen. (Courtesy of Rockwell Automation, Inc.)

A (e B harewils wos
awt % 4 ailde e beve

B (hunne et yow aant
8 calldnatn el
poun oo e ot 3 Erew Buve

EE TR RN
AR R

€. Ok Betve o contimms

Figure 5-26 Calibration screen. (Courtesy of Rockwell Automation, Inc.)

104 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Sensor Offset

You can add an offset value to inputs or outputs during calibration. An offset enables
you to you to compensate for any I/O offset errors that may exist in an application. For
example, offset errors are common in thermocouple applications.

Setting Alarms

Figures 5-27 and 5-28 show alarm configuration screens. The configuration screen in
Figure 5-28 has been labeled with descriptions. Note that four alarms can be set: Low-
Low; Low; High; and High-High. You can also set a deadband or a rate alarm. You
may also disable alarms or latch the alarms. Note that each channel can be configured
separately.

BB Module Properties - Local:é (1756 IF4AFX0OF2F/8 2.1)

Output Conigpuration | Output State | Liits | bngt Callbeation | Outpur Calleation | Backplane |
Gerwesl | Coonecton | Modueile | lnput Configuraion g Comigue sbion

Chvamnmed
|T1|2|3| — I~ Disable Al Alasss

- e ™ Latch Process Alaese

—— ZF] pet
ekt o Cudeen) B Deadhend

S | e la

S F'—— . I -+—& Rae Al

bowlow [e | Ll P ch |
Stahus Ofine O Cancel | o | wee |

Figure 5-27 Alarm configuration screen. (Courtesy of Rockwell Automation, Inc.)

CHAPTER 5—INPUT/OUTPUT MODULES AND WIRING 105

IIPORTANT Set all B corfager stem e armeters for oach chareel om B0 gage Brfore mousg 10 S ot poge

Dialblle e Lamch
M-:. Fiate Ml bave
. IMPORTANT Whwe e
ot Br Pracoes T
A S jrateds cate and Raeenl
s e Aumpentit s e g

e g wnd cuee e
Al hove Sert e Promas Al
Mt Brsmope e Owetbanet luve
ey emaliled abwer B
S a1 orllew

Cch e 80 s A Buone 80 00npt Bhee puaeanmrtion s you

Mbaserg sl coptciy il
dhange process sk wggw puints. %0 S nentpage Wve configued kx your mode
S ey e ae e e

Figure 5-28 Screen to configure alarms with explanations. (Courtesy of Rockwell Auto-
mation, Inc.)

Figure 5-29 shows the wiring for an analog input module. Note the shield around the
signal wires. Also note that it is only grounded at one end. It is normally grounded to the
chassis at the control end.

Single-Ended Inputs

Single-ended analog is an electric connection where one wire carries the signal and an-
other wire or shield is connected to electric ground. All of the analog input commons are
tied together.

Single-ended wiring compares one side of the signal input to ground. This difference
is used by the module to generate the digital data for the controller. In addition to the
common ground, the use of single-ended wiring maximizes the number of usable chan-
nels on an analog module.

106 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

+) S
: X>< - N-0 | |[ep]2 1]@)] | [iRTN-O
= ~ IN-1 | [T&)|+ 2 [EI] |iRTN-1
) IN-2 | [T&0]e s @] |iRTN-2
Shield ground | N-3 | [[&]¢ 7 [@T] |iRTN-3
RIN | [T&)]®© ° &I] [RIN —
E 4 IN-4 2 1 &[] |iRTN-4
><>< IN-5 | [T 13|EDT] |iRRTN-5

4 7~ IN-6 | [TE&) |6 15 [EDT] |i RTN-6

IN-7 | [T&)18 17 @] |iRTN-7

IN-8 | [T&)|20 19 [ED[] |iRTN-8

IN-O | [16)]2 21 |CD] | [i RTN-9

Shield ground — IN-10 | [T&)]24 23 |@)T] |i RTN-10

IN-11 | [T&)|2 25 @[] |i RTN-11

RTN | [T&D]2s 27 [@D[| (RTN

IN-12 | TED|% 20 [@D[] |i RTN-12

IN-13 | [TeD]2 % [&D]] |i RTN-13

IN-14 | [18|34 33|ED[] |i RTN-14

IN-15 | [T&D]| 35 |ED[] |i RTN-15

| — T
L] L
40915-M

Figure 5-29 Wiring diagram for a Rockwell Automation analog input module. This module
has been wired with single-ended inputs. (Courtesy of Rockwell Automation, Inc.)

Differential Inputs

The use of differential wiring is recommended for applications in which it is advanta-
geous or required to have separate signal pairs. Differential wiring improves the noise
immunity of a signal. Figure 5-30 shows an example of differential wiring. Note that
each analog input has two leads to the module inputs. The first analog input is con-
nected to terminals IN-0 and IN-1. None are tied together to ground. This is called
differential wiring.

CHAPTER 5—INPUT/OUTPUT MODULES AND WIRING

107

Channel0 i
Shield ground ———
Channel 3 ,
2Wie |=~
L] Transmitter [[
[-
Channel 6
i
+ | | . @
4-Wire e
24V de Transmitter |_
- - o
Shield ground

IN-0
IN-1
IN-2
IN-3
RTN
IN-4
IN-5
IN-6
IN-7
IN-8
IN-9
IN-10
IN-11
RTN
IN-12
IN-13
IN-14
IN-15

Dl

[5))

(%))

(=)

@ o M

=N

[=))

Dl

[S)

12

=)

()

14

)l

(=)

16

Dl

()

18

=)

1)

20

)l

(%))

22

Dl

(<))

24

=)

5))

26

&l

1D

=)

(<))

30

&l

[5))

&)l

=)

Dl

1)

36

Q|

i RTN-0 J J

i RTN-1
i RTN-2
i RTN-3
RTN

i RTN-4
i RTN-5
i RTN-6 ——
i RTN-7

i RTN-8

i RTN-9

i RTN-10

i RTN-11

RTN

i RTN-12 —
i RTN-13

i RTN-14

i RTN-15

x.lumper

wires

40912-M

Figure 5-30 Wiring diagram for a Rockwell Automation analog input module. This module
has been wired with differential inputs. (Courtesy of Rockwell Automation, Inc.)

High-Speed-Mode Differential Wiring Method

If differential wiring is used you can only use of half of a module’s channels. For
example, you can only use eight channels on a 1756-1F16 module and four channels on a
1756-1F8 module.

Some analog modules can be configured for a high-speed mode that will provide the
fastest data updates. The high-speed mode can only be used with differential wiring.
If the high-speed mode is used only one out of every four channels on the module can

be used.

108 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Analog Data Format

The user can determine whether the data returned from the module to the owner-
controller will be integer or floating point. This is done when you choose a Communica-
tions Format for the module during configuration. The integer mode uses a 16-bit signed
format and allows faster sampling rates and uses less controller memory. The use of inte-
ger mode limits the availability of certain features of an analog module. Check the manual
for the specific module for more information.

Analog Output Modules

Analog output modules are used to convert digital values to analog output signals. Analog
output modules are available with voltage or current output. Typical outputs are 0 to 10
volts, —10 to +10 volts, and 4 to 20 mA.

The RPI value for an analog output module tells the controller when to broadcast
the output data to the module. If the module resides in the same chassis as the owner-
controller, the module receives the data almost immediately after the controller sends it

(see Figure 5-31).
Owner-controffer, \ /' Dutput module
l_ll e ~ l_
(=) Y o \
(=

-c| B B "B

—_—— ©

| Data sent from owner at th:eﬁ

je) =)

—

-

©] O]

Figure 5-31 Broadcasting output data. (Courtesy of Rockwell Automation, Inc.)

If an output module resides in a remote chassis, the role of the RPI changes slightly
with respect to getting data from the owner-controller, depending on which type of net-
work is being used to connect to the modules.

When remote analog output modules are connected to the owner-controller via a
scheduled ControlNet network, the controller multicasts the output data within the local

CHAPTER 5—INPUT/OUTPUT MODULES AND WIRING 109

- =1 = =
Owner-controller ControlNet Bridge module ControlNet Bridge module} Output module
BT o &) BT
o | eg2 o
[.3 E] H g.... ;... [-1-1-] 3 oco
®
™ H [:I ™
@ @ - . N
|| Data sent from owner —! Immediate backpla
g] at module’s AP rate g 1 transfers to module
g - ’ .~
[|) [|)
2]] 2] O]
Qutput data at least as often as RPI
T 41380

ControlNet

Figure 5-32 Use of a ControlNet network. (Courtesy of Rockwell Automation, Inc.)

chassis, and the RPT also reserves a spot in the stream of data flowing across the Control-
Net network (see Figure 5-32).

The timing of this reserved spot in the ControlNet stream may or may not coincide
with the exact value of the RPI, but the control system will guarantee that the output
module will receive data at least as often as the specified RPI.

Remote Output Modules Connected via EtherNet/IP

When an EtherNet/IP network is used to connect remote analog output modules to the
owner-controller, the owner-controller multicasts data within its own chassis at the RPI
rate. The Ethernet module in the local chassis then immediately sends the data over the
network to the analog output module as long as it has not sent data within a time frame
that is 1/4 the value of the analog module’s RPI.

Output Resolution

Scaling

Most modules are capable of 16-bit resolution. The 16 bits represent 65,536 counts.

Scaling is used to change a quantity from one notation to another. Scaling is only available
with the floating-point data format in CL. modules. When a channel is scaled, two points along
the module’s operating range are chosen and low and high values are applied to the points.

For example, if you are using a module that has a 0- to 21-mA range, but your de-
vice requires a 4- to 20-mA signal, you can scale the signal to meet the requirement (see
Figure 5-33). The 4 mA would be set as the low signal and 20 mA as the high signal. Scal-
ing enables the module to be configured so that 4 mA has a value of 0 percent in engi-
neering units and 20 mA has a value of 100 percent in engineering units.

110 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Module resolution WWWWWHW’HH

omA | 21mA
] 1
Module scaling represents the : 65,536 counts :
data returned from the module | ;
1o the controller
| |
4mA 20mA
Module scaling 0% in engineering 100% in
units engineering units

Figure 5-33 Scaling. (Courtesy of Rockwell Automation, Inc.)

When you choose the low- and high-point values for your application, it does not
limit the range of the module. The module’s range and its resolution remain constant re-
gardless of how the module is scaled for the application. You can choose integer mode or
floating-point mode for an analog module.

Integer Mode

Integer mode provides the most basic representation of analog data. Scaling is not available
in integer mode. The low signal of your application range equals —32,768 counts while the
high signal equals 32,767 counts. Output modules allow you to generate an analog signal at
the terminals that correspond to a range from —32,768 to 32,767 counts (see Figure 5-34).

Low Signal and High Signal and
Range User Counts User Counts

1756-OF4/0OF8 | 0-20mA 0mA = Ocounts 21.2916 mA = 32767

+/—= 10V —10.4336V = —32768counts 10.4336V = 32767 counts
1756-0F6Cl 0-20mA 0mA = Ocounts 21.074mA = 8192 counts
1756-0OF6VI +/— 10V —10.517V = —8192 10.517V = 8192counts

Figure 5-34 Selected analog output ranges and counts.

Differences between Integer and Floating-Point Modes

The main difference between choosing integer or floating-point mode is that integer is
fixed between -32,768 and 32,767 counts and floating-point mode provides scaling to
represent I/0 data in specific engineering units to match your application.

Ramping/Rate Limiting

Ramping limits the speed at which an analog output signal can change. This prevents fast
transitions in the output that could damage some devices. The maximum rate of change

CHAPTER 5—INPUT/OUTPUT MODULES AND WIRING 111

in outputs is expressed in engineering units per second and called the maximum ramp
rate. Figure 5-35 shows three types of CLX ramping.

Ramp Type ‘ Occurrence

Run mode ramping Module is in the run mode and begins operation at the configured maximum
ramp rate when it receives a new output level (only available in floating-point
mode).

Ramp to program Present output value changes to the program value after a program

mode command is received from the controller.

Ramp to fault mode The present output value changes to the fault value after a communications
fault occurs.

Figure 5-35 Ramping.

Analog Output Module Wiring

Figure 5-36 shows the wiring for a typical analog output module. Note that this example
is for a current output. Note the shield around the signal wires. Note also that this mod-
ule is also capable of outputting voltage.

\ /2

Not used :GB @ VOUT-0 _IP
Not used G- :@ out-o -3® (Y~ A Current

RIN | | [IEB | [IEB)|| RTN . XX O:gggt
Notused | | | [IES)|[iED)|| vout-
Not used @ 4@ I0UT-1 Shield
Notused | | [[IED) [HED)]| vour-2 ground
Notused | | | lIED) 1@ louT-2

RN | | (€D f({a RTN
Notused | | {[IED) @_ VOUT-3
Not used @ Z@ 10UT-3

Figure 5-36 Typical analog output wiring. (Courtesy of Rockwell Automation, Inc.)

112 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

QUESTIONS

L

© P 1w

10.
11.

12.
13.
14.
15.
16.
17.

18.

Who owns an I/O module?
How is the ownership of a module established?
Can more than one controller get I/O information about a module?

Do modules have to reside in the same chassis of the controller to be owned by that
controller?

What is opto-isolation?

What is an RTB, and what is its purpose?

Why would you key a CLX module?

Describe how CLX modules are keyed.

Which two networks can be used for remote I/O?
Explain the term resolution.

If a 16-bit input module is used to measure the level in a tank and the tank can hold
between 0 and 15 feet of fluid, what is the resolution in inches?

What is the purpose of calibrating analog modules?

Describe a typical procedure for calibrating an analog module.

What are the four alarms that can be set for analog inputs?

What is a differential input?

What is scaling?

A 1756-OF4/OF8 module will be used to output a 4-20-mA output to control a valve.

Look up the module to find its resolution. Calculate the counts that would be used to
output 4 and 20 mA. Calculate the resolution in milliamperes/count.

A 1756-OF6VI module will be used to output a 0—10 VDC output to control a valve.
Look up the module to find its resolution. Calculate the counts that would be used to
output 0 and +10 VDC. Calculate the resolution in volts/count.

CHAPTER

Industrial Sensors

OBJECTIVES
On completion of this chapter, the reader will be able to:
= Describe the typical uses of various types of industrial sensors.

= Choose appropriate sensors for various applications.
pprop pp

= Explain terminology such as sourcing, sinking, range, hysteresis, light on, dark on,
normally open, normally closed, load powered, line powered, and so on.

Explain the wiring of two- and three-wire sensors.

Explain how capacitive and inductive sensors function.

INTRODUCTION

World competition is forcing industries to automate. Automation must be fast and flexible
to compete. Programmable control devices such as PLCs and programmable automation
controllers can be integrated with industrial sensors to create smart, flexible systems.

Automatic operation increases the need for safety devices to ensure the safety of the
operator. Many sensors have been developed for safety applications—laser scanners to
make sure no one enters a cell, and special interlocks to make sure safety doors cannot
be opened during cell operation, for example. Sensors can also be used to check for the
presence or absence of parts, to measure size or proper fill, and so on.

Mechanical Switches

A simple limit switch is an example of a mechanical sensor. When the lever on the switch
is moved, the switch changes state (see Figure 6-1). The part contacting the switch cre-
ates a change in state that the PLC can monitor. Mechanical devices are less reliable than

114 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

electronic devices. Mechanical devices are prone to failure. Contacts wear and can weld
together. Mechanical devices are also slow to actuate. It takes time to open and close the
contacts. The contacts can also chatter on opening or on closing, giving many on and off
signals instead of one crisp, timely change of state.

Figure 6-1 A mechanical limit switch.

Electronic Sensing

Electronic devices operate much more quickly than mechanical devices. Electronic sen-
sors can perform at very high production rates. This is very important in many automated
processes. Mechanical switches are too slow in many cases. Electronic sensors can detect
objects without physically touching the object. Mechanical sensors must contact the ob-
ject to be sensed. Electronic sensors are also much more dependable. They can operate
for a much longer time before failure. This is important to keeping production running.
Breakdowns are very expensive. It takes time to find and remedy problems.

Digital sensors are on/off devices. They are sometimes called discrete sensors be-
cause there are two discrete states: on or off. If a discrete sensor senses an object, the
output changes state. Discrete sensors usually use transistors for the output.

Analog sensors can provide much more information than digital sensors. Analog sen-
sors are also called linear output sensors. Sensors with an analog output have a variable
output that is proportional to the input. For example, if we have a sensor that can sense
temperatures between 0 and 500 degrees Fahrenheit, a common one might then have an
output that would be between 4 and 20 mA depending on the temperature. An analog

CHAPTER 6—INDUSTRIAL SENSORS 115

sensor can provide an output that enables the controller to determine the exact state of
the input to be measured.

There is a need for digital and analog sensors in industrial applications. Digital sen-
sors are more widely used because of their cost, simplicity, and ease of use. There are,
however, applications that require more information about a process.

Optical Sensors

Optical sensors sense objects with light. They are typically called photosensors. A photo-
sensor has a light source (emitter) and a photodetector to sense the presence or absence
of light. LEDs are used for the light source. An LED is a semiconductor diode that emits
light. The type of material used for the LED determines the wavelength of the emitted
light. LEDs can be turned on and off at extremely high speeds. They are able to keep up
with the high speeds required in production applications. LEDs are also reliable, small,
and energy efficient. LEDs operate in a narrow wavelength and are not sensitive to shock,
temperature, or vibration. They also have a very long life.

Photosensors are very immune to ambient light. The photoemitter and photore-
ceiver are both tuned to a common frequency. The photodetector essentially ignores
ambient light and looks for the correct frequency. The frequencies chosen are typically
invisible to the human eye. Manufacturers choose wavelengths so that the sensors are
not affected by other lighting in the plant. Color mark sensors use the ability to detect
different wavelengths to differentiate between colors. Visible sensors are usually used
for this purpose.

Some applications utilize ambient light for sensing. Red-hot materials such as metal
or glass emit infrared light. Photoreceivers that are sensitive to infrared light can be used
in these applications to sense temperature.

Types of Optical Sensors

There are three general types of photosensors: reflective, retro-reflective, and thru-beam.
They all function in the same basic way. The type differences are based on the way in
which the light source (emitter) and receiver are housed in the sensor.

Reflective Sensors

One of the common types of optical sensors is the reflective type. They are also called dif-
fuse sensors. The emitter and receiver are housed in the same unit (see Figure 6-2). The
emitter sends out light, which reflects off the product to be sensed. The receiver senses
the reflected light. Reflective (diffuse) sensors have less sensing distance (range) than
other types of optical sensors because they rely on reflected light from the product.

The light emitter and receiver are in the same housing. When the light from the emit-
ter reflects off an object, it is sensed by the receiver and the output of the sensor changes
state. The broken-line style of the arrows in Figure 6-2 represents the pulsed mode of
lighting, which is used to assure that ambient lighting does not interfere with the applica-
tion. Because the sensing distance (range) is limited by how well the light reflects off the
product, reflective photosensors have the shortest sensing range of the three types.

116 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Ay

il

Figure 6-2 Reflective sensor. (Courtesy ifm efector inc.)

Retro-reflective Sensors
The retro-reflective sensor is similar to the reflective (diffuse) sensor except that a reflec-
tor is used to reflect the emitted light back to the receiver (see Figure 6-3). The emitter
and receiver are both housed in the same package. A retro-reflective sensor bounces the
light off a reflector instead of the product. The reflector is similar to the reflectors used
on bicycles but is of a higher quality.

If an object obstructs the beam, the output of the sensor changes state. A retro-
reflective sensor has a longer sensing range than a reflective sensor because the reflector
is more efficient at returning light than an object. The broken line in Figure 6-3 represents

the pulsed method of lighting that is used.

Figure 6-3 Retro-reflective sensor. (Courtesy ifm efector inc.)

Thru-Beam Sensors

The thru-beam photosensor is the third type of configuration (see Figure 6-4). In this con-
figuration the emitter and receiver are housed separately. The emitter sends out light through
a space, and the light is sensed by the photoreceiver. If an object passes between the emitter
and receiver, it prevents the light from arriving at the receiver and the sensor knows there is
product present. This is probably the most reliable sensing mode for nontransparent objects.

CHAPTER 6—INDUSTRIAL SENSORS 117

The emitter and receiver are housed separately. The broken line in the figure sym-
bolizes the pulsed mode of the light that is used in optical sensors. Thru-beam sensors
have the longest sensing range.

efective beam

transmitter > receiver
Field of view -~ = Radiation pattern of light
for the receiver emitted by the transmitter

Figure 6-4 Thru-beam sensor. (Courtesy ifm efector inc.)

Fiber-Optic Sensors

Fiber-optic sensors can be purchased in the same configurations as other photosensors:
reflective , retro-reflective, and thru-beam. Fiber-optic cables are very small and flex-
ible. They are clear strands of plastic or glass fibers that are used as light pipes. The light
from the emitter passes through the fiber and exits from the other end. The light enters
the end of the fiber attached to the receiver, passes through the cable, and is sensed at
the receiver.

One of the main advantages of fiber-optic sensors is that they can be used in appli-
cations where there is very little room. The fiber cable can be extremely small, and the
electronics for the sensor can be mounted at a different location where more space is
available. Another advantage is that, being very small, the fiber cable can direct the light
so that small objects can be sensed. Figure 6-5 shows a fiber-optic sensor being used to
check for resistor leads. In this example, the fibers are being used in a thru-beam mode.

Figure 6-5 Fiber-optic photosensor used to sense very small objects in a tight area. (Courtesy
ifm efector inc.)

118 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

There are many types of fiber-optic cables available. One type is the bifurcated cable.
Figure 6-6 shows the ends of a bifurcated cable. In a bifurcated cable one end has two
cables, one to attach to the emitter and the other to attach to the receiver. At the other
end of the cable the two are combined into one cable. The emitting fibers and the receiv-
ing fibers are run in the same end.

Figure 6-6 Bifurcated fiber-optic cable.

Light/Dark Sensing

The terms light-on and dark-on are often used to describe the outputs on a photosen-
sor. Dark-on means that the output is on when there is no light at the sensor’s receiver.
Light-on means that the sensor’s output is on when there is light at the receiver. Dark-on
is also called dark-operate. Light-on is also called light-operate. Photosensors are available
in either light (light-on) or dark (dark-on) sensing. In fact, some sensors can be switched
between light and dark modes. Figure 6-7 shows how these terms apply to a thru-beam
SENnsor.

CHAPTER 6—INDUSTRIAL SENSORS 119

Thru-beam “dark operate” mode
output on when target is present

Thru-beam “light operate” mode
output on when target is not present

Figure 6-7 Dark-on and light-on for thru-beam-style sensor. (Courtesy ifm efector inc.)

Special Photosensors

Polarizing Photosensors

A polarizing photosensor is used for special applications such as sensing shiny objects or
sensing clear plastic film. This sensor uses a special polarizing reflector. The reflector has
small prisms that polarize the light from the sensor. The sensor emitter emits horizontally
polarized light.

The polarizing reflector vertically polarizes the light and reflects it back to the sen-
sor’s receiver. For example, if a shiny object moves between the sensor and reflector and
reflects light back to the sensor, the light will be ignored because it is not vertically polar-
ized (see Figure 6-8).

Reflecting surface Prismatic reflector

Polarizing Polarizing
filter __ filter __

'-"_"__

Transmitter

[Polarizing S Polarizin
& ilter W ter
Receiver Receiver

Figure 6-8 Polarizing sensor. (Courtesy ifm efector inc.)

120

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Convergent Photosensors

Convergent photosensors are a special type of reflective sensor. They direct the emitted
light to a specific area in space (focal point or field of view). The light must be reflected
from that area (focal point) to reach the receiver (see Figure 6-9). If the object to be
sensed is not in the field of view or focal point, the light will not be returned to the
receiver. Convergent photosensors are good for sensing for objects that must be in a
particular area in space.

Depth of Field
- A 4

‘“.

Focal Point

Figure 6-9 A convergent-style photosensor.

Laser Sensors

Laser sensors utilize laser LEDs as their light source. Laser light is very coherent and can
provide a very narrow beam of light. Laser sensors are used to sense very small objects
because of their coherent beam. Resolution can be as small as a few microns.

Laser sensors are also used to sense distance. Laser sensors can be used to make
very accurate measurements. The output from a laser sensor can be analog or digital.
Digital outputs can be used to signal pass/fail or other indication. The analog output can
be used to make actual measurements. Figure 6-10 shows a laser sensor that is used for
measurement. This sensor can make accurate distance measurements from 0.2 to 10
meters.

Figure 6-10 Laser measurement sensor.

CHAPTER 6—INDUSTRIAL SENSORS 121

Inspection Photosensors

Sensors have been developed to provide the capabilities of object recognition and object
inspection. One example of an object recognition and inspection sensor is the efector
dualis object recognition sensor. Figure 6-11 shows an object recognition and inspection
sensor. The efector dualis object sensor provides 100 percent inspection testing. Many
vision and inspection tasks are quite simple and do not require a full-blown vision system.
Simple, inexpensive, easy to program devices are being developed. This particular inspec-
tion sensor has a resolution of 640 X 480 pixels. It can provide 100 percent inspection in
an application. Objects can also be detected and evaluated, regardless of orientation, by
the object sensor.

Figure 6-11 A efector dualis object recognition sensor.

The efector dualis sensor is a compact sensor. The image sensor has an integrated
infrared LED lighting source. The sensor’s lighting provides the correct amount of
brightness at close range. For longer distances, external light sources can be used. The
evaluation electronics are built into the sensor.

The sensor can be set up using a menu-guided software package on a computer over
Ethernet. Programming essentially consists of teaching the sensor what a good part looks
like. The sensor detects and compares defined shapes and provides up to five configu-
rable outputs that include counting, sorting, logic functions, and pass/fail. Figures 1-12
and 1-13 show examples of inspections. The object sensor also has an LED display that
indicates active outputs. The software enables the sensor to find objects with extreme ac-
curacy and speed.

122 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Figure 6-12 Inspection to check for bent or missing pins on a chip. (Courtesy ifm efector inc.)

rey

Figure 6-13 Inspection to check for the correct part profile. (Courtesy ifm efector inc.)

Color Mark Sensors
Color mark sensors are a special type of optical sensor. A color mark sensor can differen-
tiate between colors. Color mark sensors can be used to check labels and so on.

Color mark sensors are chosen according to the color that needs to be sensed.
Color mark sensors work by detecting the contrast between two colors. The back-
ground color (behind the object) is an important consideration in any color mark
application. Sensor catalogs typically have charts available to select the proper color
mark sensor for various colors.

Incremental Encoders

Encoders can be used for position feedback and also for velocity feedback. The most com-
mon type of encoder is incremental (see Figure 6-14). The resolution of an encoder is de-
termined by the number of lines on the encoder disk. The more lines there are, the higher
the resolution. LEDs are used as light sources in encoders. Light shines through the lines
on the encoder disk and a mask and is sensed by light receivers (phototransistors). While
the disk turns, the receivers sense the pulses of light as they become visible and invisible.

An incremental encoder produces a series of square wave pulses as it turns. The num-
ber of square waves in one turn of the shaft determines the resolution of the encoder. In-
cremental encoders rotate a disk in the path of a light source. The disk acts as a shutter to
alternately block or transmit the light to photodetectors.

The resolution of an encoder is equal to the number of lines on the encoder’s disk.
An encoder that has resolution of 500 will have 500 lines on it, and one turn of the en-
coder shaft will produce 500 complete square wave cycles. This would be 500 square
wave pulses for 360 degrees of rotation. An encoder disk is shown in Figure 6-15.

CHAPTER 6—INDUSTRIAL SENSORS 123

Figure 6-15 An incremental encoder disk. (Courtesy BEI Industrial Encoders)

124

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Quadrature Encoders

Most encoders use two channels for sensing the position. A third channel is used for es-
tablishing the home position. The two channels are called the A and the B channel. When
light passes through the slits, as the disk rotates, the channel produces a pulse. The pulses
generate a square wave.

The transitions from high to low and low to high on the square wave can be sensed
by a controller. The LEDs used to sense the A and B signals are offset so that the B signal
lags the A signal by 90 degrees (see Figure 6-16).

The index track has only one pulse per revolution. This is usually called a zero or in-
dex pulse. This is used for establishing the home position.

1 CYCLE —
t=— 90 Deg.

CountsWITH & & *© °© I
quadrature —1 2 3 4 5 6 7 8
detection

ol [S R

B —i : :
Counts & : : @ . .
WITHOUT —1 : : : 2 3
quadrature ; : @ : H
detection R T .
:]

10 11 12 Etc.
Figure 6-16 Encoder pulses for the A and B signals. (Courtesy BEI Industrial Encoders)

Study Figure 6-16. If just the rising edge of the A pulse were used, there would be
one count for every pulse (without quadrature detection). If the rising and falling edge of
the A and B pulse were counted, there would be four counts for every cycle. This would
be quadrature detection. So, if the encoder had 500 pulses per revolution, the encoder’s
resolution could be 4 times greater (4 X 500 = 2000).

Direction Sensing
Pulses from the A and B channels can be fed to a PLC input card. Many PLC high-speed
input modules have the capability of accepting encoder input.

The A and B channels are used to determine the direction of rotation and position.
One channel is used as a reference. The direction of rotation can be determined by
whether the A or B channel’s output signal leads or lags (see Figure 6-16).

Single-Ended versus Differential Wiring
Encoders are available in two wiring types: single ended and differential. In single-ended
encoders, there is one wire for each ring (A, B, and X), a wire for +5 VDC, and a ground
wire (0 VDC) that is used as a common for all of the signals. In a single-ended encoder,
the pulses have a 5-volt (0—5 VDCQ) difference.

The differential encoder is more immune to noise because the rings do not
share a common ground. The differential encoder has two outputs for each channel.

CHAPTER 6—INDUSTRIAL SENSORS 125

The A channel, for example has an A+ voltage and an A- voltage. For a 5-VDC encoder,
this results in a difference of 10 volts between a high and a low (+5 to —5 volts).
Because of its noise immunity, the differential type is more common in industry.

Absolute Encoders

The absolute encoder provides a word of output with a unique pattern for each position.
A diagram of an absolute encoder disk is shown in Figure 6-17. The LEDs and receivers
are aligned to read the disk pattern (see Figure 6-18). There are several types of coding
schemes that can be used for the disk pattern. The most commonly used patterns are
gray, natural, binary, and binary-coded decimal (BCD). Gray code is popular because it is
a nonambiguous code. Only one track changes at a time. Any indecision that occurs dur-
ing an edge transition is limited to plus or minus one count. If the output changes while it
is being read, a latch option locks the code to prevent ambiguity.

|

|
NNNANEENN\NEE .

o

.

Figure 6-18 How photodetectors read the position of an absolute encoder. (Courtesy BEI
Industrial Encoders.)

126 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Incremental encoders can provide more resolution at a lower cost than absolute en-
coders. Incremental encoders have a simpler interface because they have fewer output
lines. A simple incremental encoder would have four lines: two quadrature (A and B)
signals and power and ground lines. A 13-bit absolute encoder would have 13 output
wires plus 2 power lines. If the absolute encoder had complementary outputs, the en-
coder would require 28 wires.

Field Sensors

The two types of field sensors are capacitive and inductive. Both sensors are very similar.
Field sensors have a coil that is used to generate a field in the front of the sensor.
Figure 6-19 shows a block diagram of a field sensor. Capacitive sensors can be used to
sense any material. Inductive sensors can only sense metallic objects.

l

Electrode [Eva!uat_ion !
Circuit

mm. .‘..“I,.‘.—-i .!-‘1 1.

Figure 6-19 Block diagram of field sensor components. (Courtesy ifm efector inc.)

Figure 6-20 shows a special purpose capacitive-type sensor. This sensor can be used
to measure the level in a tank.

Hysteresis in Field Sensors

Hysteresis is a term for sensors that means there is an on point and a separate off point.
The sensor output will not turn on until the target crosses the on point. It will then stay
on until the target moves away and crosses the off point. Figure 6-21 shows a diagram
of hysteresis. Note the difference between the turn-on and turn-off points. Imagine an
object moving horizontally above the sensor in the sensing range. The object would first
enter the turn-off point of the field. The output would not change state. As the object
continued to move, it would enter the turn-on point and the output would change state.
For this example let’s assume the output is now on. The object would continue to move
and the trailing edge of the object would leave the turn-on point on the other side of
the sensor. The output would not change state. As the object continued to move, the
trailing edge of the object would leave the turn-off point and the output would change
state (to off).

CHAPTER 6—INDUSTRIAL SENSORS 127

—— Sensor fields
are located
along the

== length of the

— probe.

Figure 6-20 Capacitive tank level sensor. (Courtesy ifm efector inc.)

Hysteresis is a benefit in sensing. It prevents an object from teasing the sensor. In
other words, imagine a bottle moving down a conveyor line. Without hysteresis it might
be vibrating as it passed the sensor and might be sensed multiple times. Hysteresis as-
sures that it is only counted once.

turn-oﬁ

, e hysteresm
turn-on —-5/

Figure 6-21 Sensor hysteresis. (Courtesy ifm efector inc.)

128 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Sensing Range

Sensing range is primarily dependent on the size of the coil in the sensor. This means that
the larger the diameter of the sensor, the larger the sensing range. Figure 6-22 illustrates
the sensing range for three different-diameter sensors.

O] @® @®
IF IG Il
12 mm 18 mm 30 mm
Diameter Diameter Diameter

Figure 6-22 Note the difference in sensing range from the smallest diameter of sensor to the
largest. (Courtesy ifm efector inc.)

The target and the target material can also affect sensing range. Figure 6-23 shows
how range is affected by part size. If the part is the smallest as shown, the range will only
be 25 percent of the specified range.

Shape Correction
factor factor

- ——— (05 0.85

_— (025 0.55

Figure 6-23 How size of the object can affect sensing range. (Courtesy ifm efector inc.)

CHAPTER 6—INDUSTRIAL SENSORS 129

In inductive sensors the material also affects sensing range. Ferrous (iron-based)
metals are sensed the best. Nonferrous metals such as aluminum are not sensed as well so
the sensing range must be reduced.

Shielding

A regular field sensor generates a field that is not just on the end of the sensor. The field
extends out from the side of the sensor also. This means that it can sense objects on the
side of the sensor. This is usually not desirable and can cause problems. The sensor for
example might sense the fixture that it is mounted in.

Sensors are available in shielded and nonshielded styles. Shielded sensors are also
called flush sensors because they can be mounted flush in their mounting and not sense
the mount. Nonshielded sensors are called nonflush (see Figure 6-24). A shielded sensor
has a brass or copper ring around the outside of the coil. It prevents the field generated
by the sensor from going out to the side. This reduces the sensing range, but it does allow
them to be flush mounted.

non-flush flush

Figure 6-24 Difference in field size for nonflush and flush sensor. (Courtesy ifm efector inc.)

Mounting Field Sensors

Mounting wells are available for field sensors. Figure 6-25 shows a capacitive sensor mounted
in a protective well in a tank. The sensor is adjusted to ignore sensing the well and only senses
the material in the tank. Mounting wells can protect sensors from corrosive environments.

Figure 6-25 A capacitive sensor mounted in a mounting well. (Courtesy ifm efector inc.)

130 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Figure 6-26 shows mounting specifications for a nonshielded field sensor. Note that
the sensor must be mounted so that the surrounding material is sufficiently far away from
the field. Note also that if there is anything in front of the sensor, it must be sufficiently
far away so it does not affect the sensing.

e B

e T ——
—s—/-‘l__gxs_-—
Metal —a ~— Non-target

|
background
*ZXS':I_ metal

N 52

D = sensor diameter
S = nominal sensing range
B = maximum thread length

Figure 6-26 Mounting a nonshielded sensor. (Courtesy ifm efector inc.)

Figure 6-27 shows specifications for mounting shielded sensors. Note that they can be
mounted flush with the surface. Note also that less distance is required between shielded
Sensors.

D
—» D [*—¥» D [+

active face active face

L2 R
Metal”” % %

D = switch diameter

Figure 6-27 Mounting a shielded sensor. (Courtesy ifm efector inc.)

Radio Frequency Identification (RFID) Sensors

RFID sensors can help implement closed-loop manufacturing applications includ-
ing pallet tracking, component identification, intelligent part routing, and assembly
verification.

CHAPTER 6—INDUSTRIAL SENSORS 131

Inductive RFID Technology

An RFID system generates an electromagnetic field for reading and writing data. The
electromagnetic field emitted by the antenna induces voltage in the passive identification
(ID) tag (transformer principle). This activates the ID tag (transponder), which returns
its code. The read/write module processes the code and sends the transmission to the
interface networking system or to a ControlLogix process or through a special purpose
module. Figure 6-28 shows an example of a RFID reader and a tag. The tag is shown on
the lower left of the figure. The reader is on the upper right. Tags can be installed on the
product, fixtures, pallets, and so on. Tags can be read from or written to.

Figure 6-28 RFID reader and a tag. (Courtesy ifm efector inc.)

Pressure Sensors

Strain Gauges

Strain gauges are used for pressure/force sensing. They are very versatile and have a wide
variety of uses. They are based on the principle that a thin wire has more resistance than
a thick wire.

If an elastic wire were stretched, the diameter of the wire would decrease in the
middle of the wire. The decrease in wire diameter would increase the resistance of the
wire. If we measured the change in resistance, we could relate it to the force applied to
the wire. The change in resistance is proportional to the change in the force that is ap-
plied. Assume that a constant current is sent though the strain gauge. When a force is
applied, the resistance of the strain gauge changes. The constant current and the change
in resistance produce a voltage change that can be measured. Thus a change in force can
be made proportional to the voltage change.

132 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

A transmitter is often used with a strain gauge. The transmitter is designed for the
strain gauge. The strain gauge provides the current for the strain gauge and monitors the
change in resistance. The transmitter outputs a current or voltage signal that is propor-
tional to the force exerted on the strain gauge.

Strain gauges used in pressure measurement are typically bonded to a membrane. Pres-
sure strain gauges are mounted so that a change in pressure distorts the membrane propor-
tionally with the force. Strain gauges can also used to measure weight or acceleration.

Strain gauges must be mounted in the correct orientation because they are only sensi-
tive to change in one direction. An arrow is typically used on a strain gauge to show which
direction it should be mounted in. Adhesives are commonly used to mount strain gauges.

Pressure is another example of something that often requires analog readings. Pressure
sensors are available with digital and analog output. They provide a range of output voltage
(or current), proportional to the pressure. Figure 6-29 shows pressure sensors on the top.
These pressure sensors provide an output and also a digital readout for the operator. The
diagram on the top right and at the bottom of Figure 6-29 shows the sensor’s components.
Note that the sensor is programmable. It is programmed with switches on the front of the
sensor. The display provides feedback. The diagram at the bottom shows the pressure-
sensing cell.

Display

Programming
menu

Microprocessor

Ceramic cell

- Diaphragm

[- Measuring electrodes
@ Reference electrodes
Base

Figure 6-29 On the top left are two pressure sensors. On the top right is a diagram show-
ing the components of a pressure sensor. The diagram at the bottom shows the pressure-
sensing cell. (Courtesy ifm efector inc.)

CHAPTER 6—INDUSTRIAL SENSORS 133

Flow Sensors

There are many types of sensors that can be used to measure flow. Flow sensors are very
important in process control. This chapter will only examine two of them.

Magnetic Inductive Flow Meters

The operating principle of a magnetic flow sensor is based on Faraday’s law of electro-
magnetic induction. The fluid to be sensed must be conductive. Faraday’s law states
that the voltage induced across any conductor as it moves at right angles through a
magnetic field is proportional to the velocity of that conductor. The sensor generates a
magnetic field around the fluid. The flow of an electronically conducting fluid through
a defined pipe diameter is detected by the sensor and used to determine the velocity
of the fluid.

The magnetic flow sensor shown in Figure 6-30 has a display that includes a numeric
display that indicates the flow rate (gal/min or I/min), total volume (gallons or liters),
and temperature (°F or °C) of all conductive media. The sensor can provide a switching
output, analog output, and pulsed output. The application parameters are programmed
through push buttons on the front of the sensor. Magnetic flow sensors are accurate and
repeatable.

Figure 6-30 Magnetic flow meter.

Calorimetric Principle Flow Sensors

A calorimetric flow sensor detects the cooling effect of a flowing fluid or gas to moni-
tor the flow rate of a fluid. Figure 6-31 shows the principle of operation. The diagram
on the left shows that there are two transistors and a heating element in the tip of the
Sensor.

134 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

The tip of the probe is heated. As the fluid begins to flow, heat will be carried away
from the sensor tip as shown in Figure 6-31. In the middle figure there is no flow, so both
transistors sense the same temperature. In the diagram on the right there is flow, so there
is a temperature difference between the transistors. The faster the flow, the more differ-
ence in temperature between the transistors. The difference in temperature between the
two transistors provides a measurement of the flow.

Jolw
HEATER HEATER

Figure 6-31 Calorimetric flow sensing. (Courtesy ifm efector inc.)

Ultrasonic Flow Sensors

Ultrasonic flow sensors utilize sound waves to measure flow rate. Ultrasonic technology
is based on the differential transit time principle. Sound pulses are alternately emitted
and detected with and against the direction of flow through the use of sound transducers.

CHAPTER 6—INDUSTRIAL SENSORS 135

The flow rate is calculated from the difference of the transit time—the time it takes for the
sound wave to be transmitted and received. Figure 6-32 shows a diagram of the operation
of an ultrasonic flow sensor.

'
(=1

Figure 6-32 Ultrasonic sensing. (Courtesy ifm efector inc.)

The length of time it takes for the sound to return is proportional to the distance. The
ultrasonic sensor can then output a signal to represent the distance to the object. Ultra-
sonic sensors can be very accurate. Note the use of the gate sensor to notify the PLC
when a part is present.

Temperature Sensors

Thermocouples
The thermocouple is one of the most common temperature sensors. Thomas J. Seebeck
discovered the principle of thermocouples in 1821.

Temperature is typically analog information. A thermocouple is a very simple sen-
sor: two pieces of dissimilar metal wire joined at one end. The other ends of the wire are
connected via compensating wire to the analog inputs of a control device such as a PLC.
The principle of operation is that when dissimilar metals are joined, a small voltage is
produced. The voltage output is proportional to the difference in temperature between
the cold and hot junctions. Thermocouples are colorcoded for polarity and also for type.
The negative terminal is red, and the positive terminal is a different color that can be
used to identify the thermocouple type. Figure 6-33 shows a typical thermocouple.

136

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Figure 6-33 Common thermocouple.

Current output is often used for process measurement and control. A current signal
has many advantages in industrial measurement and control. A 4-20-mA current loop
system can be used when the sensor needs to be mounted a long distance from the con-
trol device. A 4-20-mA loop is useful to about 800 meters. Current signals are more noise
immune also. Process sensors are often connected to transmitters. A transmitter takes the
small signal from the sensor and converts it to a voltage or current signal. Current signals
are very common. Figure 6-34 shows a thermocouple transmitter.

Assume this 4-20-mA thermocouple transmitter varies its output between 4 and
20 mA. There must be an adjustment on the sensor transmitter to adjust the zero and
span so that the sensor transmitter can be calibrated. Remember the example of the
thermocouple transmitter that should output 4-20 mA on the basis of a 0-200-degree-
Fahrenheit temperature. The zero adjustment is used to make sure the transmitter
outputs 4 mA for a 0-degree signal. The span adjustment is used to make sure that the
transmitter outputs 20 mA for 200 degrees. Note that when you make these adjust-
ments, you must always check, adjust, recheck, and readjust to make sure both are
accurate after each is adjusted.

For this example, assume the thermocouple transmitter outputs 4-20 mA for tem-
peratures between 0 and 200 degrees Fahrenheit.

CHAPTER 6—INDUSTRIAL SENSORS 137

Figure 6-34 A thermocouple transmitter.

The output from the analog sensor can be any value in the range from 4 to 20mA
based on the 0-200-degree temperature. Thus the PLC can use the signal from the
thermocouple transmitter to monitor temperature very accurately and closely control a
process.

Industrial thermocouple tables use 75 degrees Fahrenheit for the reference
temperature.

Temperatures vary considerably in an industrial environment. If the cold junction
varies with the ambient temperature, the readings will be inaccurate. This would be un-
acceptable in most industrial applications. It is too complicated to try to maintain the cold
junction at 75 degrees. Industrial thermocouples must therefore be compensated. This is
normally accomplished with the use of resistor networks that are temperature sensitive.
The resistors that are used have a negative coefficient of resistance. Resistance decreases
as the temperature increases. This adjusts the voltage automatically so that readings re-
main accurate. PLC thermocouple modules automatically compensate for temperature
variation.

The thermocouple is an accurate device. The resolution is determined by the device
that takes the output from the thermocouple. The device is normally a PL.C analog mod-
ule. The typical resolution of an industrial analog module is 14 bits; 2 to the 14th power
is 32,768. This means that if the range of temperature to be measured were 1200 degrees
Fahrenheit, the resolution would be 0.03662109 degrees/bit (1200/32768 = 0.0367); this
would mean that our PLC could tell the temperature to about 4 hundredths of 1 degree.

138

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Thermocouples are the most widely used temperature sensors. There are a wide vari-
ety of thermocouples available. Figure 6-35 shows a few of the available types. This figure
also shows the composition of the thermocouples.

Temperature Range Temperature Range
Materials (degrees Fahrenheit) (degrees Celsius)

B Platinum and rhodium 32 to 3272 0to +1,800

E Chromel and constantan —310 to 1832 —190 to +1000

J Iron and constantan —310to 1472 —190 to +800

K Chromel and alumel —310 to 2498 —190 to +1370

R Platinum or platinum and 13 % rhodium 32 to 3092 0to +1700

S Platinum or platinum and 10 % rhodium 32 to 3209 0to +1765

T Copper and constantan —310 to 752 —190 to +400

Figure 6-35 Temperature ranges for some common thermocouples.

Resistive Temperature Devices (RTDs)
An RTD is a sensor that changes resistance with a change in temperature. RTDs are
more accurate than thermocouples.

An RTD a precision resistor that is temperature sensitive. RTDs are made from a
pure metal that has a positive temperature coefficient.

Platinum is the most popular material for RTDs. Platinum has a very linear change in
resistance versus temperature. Platinum RTDS also have a wide operating range. Plati-
num is very stable; this makes the RTD a very stable device.

The most common resistance for an RTD is 100 ohms.

Wiring RTDs

An RTD is basically a two-wire device. The lead wires from the RTD affect the ac-
curacy of the RTD. RTDs can also be purchased in a three- or four-wire configuration
(see Figure 6-36). Three- and four-wire RTDs compensate for lead wire resistance and
are more accurate.

Two-Wire Three-Wire Four-Wire

Figure 6-36 RTD wiring configurations.

CHAPTER 6—INDUSTRIAL SENSORS 139

Thermistors

A thermistor is a temperature-measuring sensor. Thermistors are semiconductors that
are constructed from human-made materials. Thermistors are very precise and stable.
They have a negative coefficient of temperature. This means that the resistance decreases
as temperature increases. Thermistors produce a large change in resistance for changes
in temperature. The output of thermistors is not very linear; it is only linear within a small
temperature range. A thermistor is a good choice if the range of temperature to be mea-
sured is relatively small. Thermistors are more sensitive than RTDs. They are often used
in motor applications to monitor temperature. This can then be used to shut off the mo-
tor circuit if the temperature gets too high. Thermistors cannot typically be used above
300 degrees Celsius.

Sensor Wiring

Sensors are available in two- and three-wire types. Two-wire sensors are called load pow-
ered and three-wire sensors are called line powered.

Load-Powered Sensors
Load-powered sensors are two-wire sensors. One wire is connected to power; the other
wire is connected to one of the load’s wires (see Figure 6-37). The load represents what-
ever device is being used to monitor the output. The load is usually a PLC input. The
load must limit the output current to an acceptable level for the sensor, or the sensor
output will be destroyed.

Wiring diagrams are usually located on the sensor or its leads.

L

Figure 6-37 Load-powered sensor.

In a load-powered sensor the current required for the sensor to operate must pass
through the load. Think of the load as being a PL.C input. A small current must be al-
lowed to flow to enable the sensor to operate. This operation current is called a leakage
current.

The leakage current to operate the sensor is typically under 2.0 mA.

The leakage current is sufficient to operate the sensor but not enough to turn on the
input of the PLC. (The leakage current is usually not enough current to activate a PL.C
input. If it is enough current to turn on the PLC input, it will be necessary to connect a

140

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

bleeder resistor as shown in Figure 6-38.) When the sensor turns on, it allows enough
current to flow to turn on the PLC input.

Input
- Module

L]l P T 1
- g - +—3 Input
e B

€ T
Bleeder

Resistor

Figure 6-38 Use of a two-wire (load-powered) sensor. In this case the leakage current was
enough to cause the input module to sense an input when there was none. A resistor was
added to bleed the leakage current to ground so that the input could not sense it.

Line-Powered Sensors

Line-powered sensors typically have three-wires (see Figure 6-39), two wires for power
and one wire for the output signal. Figure 6-39 shows the load. The load is connected to
the output signal. The load is normally a PLC input. The load must limit the output cur-
rent to an acceptable level.

==

Figure 6-39 Three-wire (line-powered) sensor.

The load current is the output from the sensor. If the sensor is on, there is load cur-
rent. This load current turns the load (PLC input) on. The maximum load current is typi-
cally between 50 and 200 mA for most sensors. Make sure that you limit the load (output)
current or the sensor will be ruined. Note that it is possible for the output LED on a sen-
sor to function and the output to still be bad.

Sinking versus Sourcing

The terms sinking and sourcing confuse even experienced technicians. Sensors are avail-
able with outputs that are either positive or negative. A sensor with a positive output
is called a sourcing sensor. Sourcing sensors are also called PNP sensors because they
utilize a PNP transistor for the output device. So this concept thus far can be relatively

CHAPTER 6—INDUSTRIAL SENSORS 141

straightforward if you remember that: a sourcing sensor is one that has a positive output
polarity. (See Figure 6-40.)

+24V

Qutput
B P

Figure 6-40 A sourcing or PNP sensor. Note that 24 VDC and 0 VDC are connected directly
to the sensor to power it. The output wire is connected directly to one side of the load. The
other side of the load is connected to the 0-VDC side. Don’t forget the importance of the load.
The load is usually a PLC input. It must limit the output current to protect the sensor. Assume
the output current limit for this sensor is 100 mA. The load must draw less than 100 mA.

The other way to think about this is to remember that if the sensor output is positive,
the only way there is any potential voltage is if we connect to the negative side. In other
words, if we connected a voltmeter to the output lead and also to 0 VDC, there would be
a potential voltage difference. If we connected a meter to the output lead and to 24 VDC,
there would be no potential voltage difference. Figure 6-41 shows sinking sensors con-
nected to a sourcing input module.

Sinking
Input

Module

4 ‘ urc 3 ! +=—2 Input 0

5 & 6 €

e 6 6

Figure 6-41 A sourcing sensor connected to a PLC input.

NPN (Sinking Type)
When the sensor is off (nonconducting), there is no current flow through the load. When
the sensor is conducting, there is a load current flowing from the load to the sensor. The
choice of whether to use an NPN or a PNP sensor is dependent on the type of load. In
other words, choose a sensor that matches the PLC input module requirements for sinking
or sourcing,

A sensor with a negative output is called a sinking sensor. Sinking sensors are also
called NPN sensors because they utilize an NPN transistor for the output device. So this

142

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

can be easily understood if you remember that: a sinking sensor is one that has a negative
output polarity. (See Figure 6-42.) Figure 6-43 shows how a sinking sensor is connected
to a sourcing input module.

+24V
Loag

Qutput

-(OV)

Figure 6-42 A sinking or NPN sensor. Note that 24 VDC and 0 VDC are connected directly
to the sensor to power it. The output wire is connected directly to one side of the load. The
other side of the load is connected to the 24 VDC. Don’t forget the importance of the load. It
must limit the output current to protect the sensor. Assume the output current limit for this
sensor is 100 mA. The load must draw less than 100 mA.

Sourcing
Input
Module

9 6 6

Figure 6-43 A sinking sensor connected to a PLC input.

Output Current Limit

The output current limit for most sensors is quite low. Output current must often be
limited to under 100 mA. If you exceed the output current limit for a sensor, the sensor’s
output will be destroyed. The indicator LED on the sensor may still indicate on or off,
but the output may be bad. If the sensor’s output is connected to a PLC input, the PLC
input will limit the current to a safe amount.

Timing Functions for Outputs

Timing functions are available on some sensors. They are available with on delay and off
delay. On-delay delays turning the output on by a user-selectable amount of time after
the sensor senses the part. Off delay holds the output on for a user-specified time after
the part leaves the sensing area.

Normally Open and Normally Closed Outputs
There are two different types of outputs available for sensors: normally open and nor-
mally closed. The output in a normally open sensor is open (off) until the sensor senses

CHAPTER 6—INDUSTRIAL SENSORS 143

an object. The output in a normally closed sensor is on until it senses an object; then the
output turns off.

Switching Frequency
When choosing a sensor, one of the considerations is that the sensor be capable of sensing
and switching the output fast enough to meet the demands of the application. In most ap-
plications, speed will not be an issue as electronic sensors are very fast. In very high speed
applications, however, you must consider the sensor’s switching time. Figure 6-44 shows
a diagram of switching speed for a sensor. You must consider the time that the target is
present and also the time that represents the time between targets.

Response time is the lapsed time between the target being sensed and the output
changing state. Response time can be crucial in high-production applications. Sensor
specification sheets will give response times.

Switching Time (ts) = 2 x Smallest Distance
Maximum Target Speed

Switching Frequency (fs) = Maximum Target Speed
2 x Smallest Distance

motion of
target
-——-

o dy o dz '
dy = length of target

d; = space between targets
Total switching time (ts} = t1 & t2

Switching frequency (fs) =‘E;

on — - - -
off
t1 = time that target is present
tz = time that target is not present

Figure 6-44 Diagram of switching frequency. (Courtesy ifm efector inc.)

144 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Installation Considerations

Electric Mounting Considerations
The most important wiring caution for a sensor is to limit the output load current. The load
(output) current must be limited to a very small amount. The output limit is typically 100
mA or less. If the load draws more current than the sensor current limit, the sensor output
is blown. You must limit output current to a level less than the sensor’s output current limit.
PLC input modules draw very little current and will not exceed a sensor’s output limit.
Sensor wiring should be run separately from high-voltage wiring and in a metal con-
duit if the high-voltage wiring is in close proximity to the sensor wiring. This will help pre-
vent false sensing or malfunction. The other main consideration is to specify the proper
polarity for the sensors.

Mechanical Mounting Considerations
Sensors should not be mounted vertically. In a vertical position dirt, oil, and chips can ac-
cumulate on the sensing surface and cause false reads. If the sensor is mounted horizon-
tally, the debris will have more of a tendency to fall off. Air blasts or oil baths can be used
to remove chips and dirt if sensors are prone to accumulating debris.

A sensor must be mounted so that it does not detect its own mount or another sen-
sor. If a sensor is unshielded, it cannot be mounted flush in a fixture. Sensors must not be
mounted too close together, as they can interfere with each other.

APPLICATIONS

Figure 6-45 shows a smart level sensor. The sensor’s microprocessor and push button are
used to teach the empty and full conditions of the container.

Shuts off
solenoid valve
used to fill tank

Can be used to
Connected to an turn on valve
AC power source

Figure 6-45 Use of two sensors and a sensor controller sensor to sense the high and low
level in a container. (Courtesy ifm efector inc.)

CHAPTER 6—INDUSTRIAL SENSORS 145

Figure 6-46 shows the use of a laser distance sensor to measure the diameter of a
paper roll and also to measure the distance of paper coming off the roll to aide the con-
troller with tensioning.

e

v

Figure 6-46 Laser distance application. (Courtesy ifm efector inc.)

Figure 6-47 shows the use of sensors to check for the proper number of bottles in a
case. As the cases pass by, each of the three sensors should sense a bottle. As the cases
move, if one or two sensors sense a bottle and the other one or two do not, bottles are
missing.

Figure 6-47 Checking for the presence of bottles. (Courtesy ifm efector inc.)

146 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Figure 6-48 shows pneumatic cylinders with sensors to sense the position of the
piston in the cylinder.

Figure 6-48 Position sensing in a cylinder. (Courtesy ifm efector inc.)

Figure 6-49 shows an application for a polarizing photosensor. The sensor is being
used to sense a transparent bottle. A regular photosensor would not work well in this
application.

Figure 6-49 A polarizing sensor application. (Courtesy ifm efector inc.)

CHAPTER 6—INDUSTRIAL SENSORS 147

Figure 6-50 shows a fiber-optic thru-beam sensor being used to check for indi-
vidual components. The beam from the fiber is obstructed by one of the wires of the
electric component.

Figure 6-50 Fiber-optic thru-beam sensor application. (Courtesy ifm efector inc.)

In Figure 6-51 a laser sensor in an application is being used to sense very small glass
components. Laser sensors have a very small diameter coherent beam so that even very
small parts can be sensed.

Figure 6-51 Laser sensor application. Note the small size being sensed. (Courtesy ifm
efector inc.)

148 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

A pressure sensor application is shown in Figure 6-52. A pressure sensor is used to pro-
vide feedback to the controller. Pressure sensors are available with digital or analog output.

Figure 6-52 Pressure sensor checking pressure in a line. (Courtesy ifm efector inc.)

In Figure 6-53 an inductive sensor being used to sense the speed of the gear. The
sensor senses every tooth as it passes by. The controller divides the number of pulses it
receives by the number of teeth on the gear in a period of time to calculate the revolu-
tions per minute (RPM) of the gear.

Figure 6-53 An inductive sensor used to sense teeth on a gear. (Courtesy ifm efector inc.)

CHAPTER 6—INDUSTRIAL SENSORS 149

Considerations in the Choice of Sensors
There are several important considerations when choosing a sensor.

The characteristics of the object are crucial. Is the material metallic? Is it ferrous
(iron-based) metal? Is it nonmetallic? Is it a large object or a very small one? Is
the object transparent or reflective? The particular characteristics will exclude
many types of sensors and may limit the choice to one particular type.

What type of output is needed: analog or digital? How much accuracy is required?
How much range is required from the sensor? Is there excessive electrical noise
present, such as in a welding application?

Are there problems with contaminants such as oils or metal chips, sawdust, dirt, and
so on? Is the sensing area very small?

Is the speed of response important? Response time is the time between the object
being sensed and the output changing state. Some applications require very fast
response times.

The answers to these considerations will narrow the possible choices. One sensor can
then be chosen on the basis of factors such as the cost of the sensor, the cost of failure,
and the reliability of the sensor.

QUESTIONS

Describe the output of a digital sensor.
Describe the output of an analog sensor.
Describe a thru-beam sensor.

Describe a retro-reflective sensor.
Describe a diffuse sensor.

S o

Which type of photosensor has the longest range?
a. Thru-beam

b. Diffuse

c¢. Retro-reflective

d. Convergent

7. What does the term light-on mean?

8. If a reflective sensor’s receiver is not receiving light and the sensor’s output is on, is it
a light-on or dark-on sensor?

9. If a thru-beam sensor’s receiver is receiving light and the sensor’s output is on, is it a
light-on or dark-on sensor?

10. Explain the principle of a field sensor.

11. Explain hysteresis.

12. Draw and explain the wiring of a load-powered sensor.

13. Draw and explain the wiring of a sourcing line-powered sensor.

150 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

14.
15.
16.
17.
18.
19.
20.
21.

True or false: A sinking sensor has an output that has positive polarity.

What is leakage current?

What is the importance of limiting the load current?

Explain the color-coding system for thermocouples.

How are changes in ambient temperature compensated for with a thermocouple?
What determines which thermocouple type should be chosen?

Explain at least two electric precautions as they relate to sensor installation.
Explain at least two mechanical precautions as they relate to sensor installation.

CHAPTER

Math Instructions

OBJECTIVES
On completion of this chapter, the reader will be able to:

= Utilize math instructions in programs.

» Explain terms such as comparison instructions, precedence, logical instruction,
and so on.

= Explain how to determine which instructions are available in each programming
language.

INTRODUCTION

Arithmetic instructions are very useful in programming industrial applications. Many
types of instructions are available. This chapter will cover many of the more commonly
used instructions. CLX has a wide variety of instructions that can ease application deve-
lopment. Once you become familiar with some of the more common instructions, it will
be easy to learn new ones.

OPERATION INSTRUCTIONS

Math instructions are very useful in developing automated systems. For example, many
times a bit count in memory must be changed to a more useful value for display on an
operator screen. Bit counts may not make much sense to an operator, but the actual RPM
does. Input values must usually be modified before a value is sent to an analog output mod-
ule. This chapter will examine some of the math instructions available in RSLogix 5000.

152 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

The instruction help file in RSLogix is very useful in explaining each instruction and also
showing which languages they are available in.

Add (ADD) Instruction

The ADD instruction is used to add two numbers. The instruction adds these values from
Source A and Source B. The source can be a constant value or an address (tag in CL).
The result of the ADD instruction is put in the destination (Dest) address (tag in CL).

An example of an ADD instruction is shown in Figure 7-1. If contact Inp_1 is true,
the ADD instruction will add the number from Source A (Val_1) and the value from
Source B (Val_2). The result will be stored in the Dest address (Val_3). In this example,
12 was added to 14 and the result (26) was stored in Val_3.

1 . &0E

— p— ' A
(I § r v
1
wree W
Fd
v @l

Figure 7-1 Use of an ADD instruction.

Subtract (SUB) Instruction

SUB instructions are used to subtract two numbers. The source of the numbers can be
constants or addresses (tags in CL). A SUB instruction subtracts Source B from Source A.
The result is stored in the Dest address (tag).

The use of an SUB instruction is shown in Figure 7-2. If the tag named Calculate is
true, the SUB instruction is executed. Source B is subtracted from Source A; the result
(798) is stored in the Dest tag named Number_Left. Source A in this example is a con-
stant (1250). Source B is a tag named Qty_Parts. Qty_Parts has a value of 452. Note that a
constant (1250) was used for Source A. A tag could have been used.

nilc i dinfe s i

— f— ' F Rl la-

wrce B Ofy Parts

Voo | o™

Figure 7-2 Use of a SUB instruction.

CHAPTER 7—MATH INSTRUCTIONS 153

Divide (DIV) Instruction

The DIV instruction can be used to divide two numbers. The source of the two numbers
can be constants or addresses (tags). When a DIV instruction is executed, Source A is
divided by Source B and the result is placed in the Dest tag.

Figure 7-3 shows the use of a DIV instruction. If contact Calculate is true, the DIV
instruction will divide the number from source A (569) by the value from source B
(12.456). The result is stored in the Dest tag named Answer_Int. Note that the tag is an
integer-type tag, so the result was rounded to an integer.

il linfe 1y
—I — s Dikhie

Figure 7-3 Use of a DIV instruction in RSLogix 5000. In this example the result is a whole
number because the Dest tag is an Int.

Figure 7-4 shows an example of a division that has a Real-type tag as its destination.
In this example, the result is a decimal (Real) number. Note that a constant (569) was
used for Source A and a constant (12.456) was used for Source B. Tags could have been
used for Source A or Source B.

sl ik e . i
q‘ _ s Uit

Figure 7-4 Use of a DIV instruction. In this example the result is a decimal number because
the Dest tag is a Real.

Multiply (MUL) Instruction

A MUL instruction is used to multiply two numbers. The first number (Source A) is mul-
tiplied by the second number (Source B). The result of the multiplication is stored in
the Dest address. Source A and Source B can be numbers or tags. Figure 7-5 shows the
use of a MUL instruction. If the tag named Calculate is true, Source A (the value in tag

154 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Cases_Prod) is multiplied by Source B (24) and the result is stored in the Dest tag Bottles_
Prod. Note that a constant (24) was used for Source B. A tag could have been used.

Callculats p ML
] f— { Mhullsipily —
Source A Cases_Prod
1 265 &
Source B M

Owit Buomies_Peod
2 -

Figure 7-5 Use of a MUL instruction in RSLogix 5000.

Average (AVE) Instruction

The AVE instruction calculates the average of a set of values. The simplest example
would be a 1-dimensional array. In the example shown in Figure 7-6, the name of the
array is Data_Array. There is only one dimension to this array so 0 is entered for the
dimension (Dim) to vary. The result of the AVE instruction will be put into the tag named
Ave_Value. The AVE instruction also requires a tag name for a control tag. In this exam-
ple the tag name is Control_Tag. The Length parameter tells the instruction how many
elements to include in the calculation, five in this example. The Position contains the
position of the current element that the instruction is accessing.

Stat Al .
, Booer aige Fie -
Arrwy Date_Areyf0l
Dim. Vo Vi 0 -
Dt Ave_Valus |
B 20008 @ I
Congrol Control_Tag
Langeh £e
gl & -
nitoutane | | | »
o Lat T N ¢ | Scope | Value ® | Descrpron
ré Floutne |- Daotahmay Contollier e}
= Data_Amag{0) Contolien 100.0
Lol Data_Anay(1) Contolier $0.31
1= Data_Amayg(2] Conmoilier 7.0
1= Data_Anay(3) Contolier 94.6
| Data_Asag{d) Controller 99.12
| Ave Ve Conmoilier 6, 204

Figure 7-6 Use of an AVE instruction.

CHAPTER 7—MATH INSTRUCTIONS 155

An AVE instruction can also be used on a multidimensional array. When used on a
multidimensional array, the dimension to vary determines which row or column within
the array is used for the calculation. The name of the array specifies the start position,
and the Dimension to Vary specifies the direction to use (row or column). DINT in the
example is a double integer type tag.

Dimension 1

Tto1234
ol2

0|19|18| 17|16
111511413 [12| 11
Dimension 0 = 54434241
2[10] 98|76 Average 5 °

3|54 (3|21

Subscripts

AVE
—{ Average File —(EN)—
Array Dint_Array[3,0]
Dim. To Vary 1 —DN)}—
Dest Ave_Val
0 +—ER)}—
Control Control_Tag
Length 5
Position 0 4

Example of AVE Instruction for Dint_Array Which is a DINT[4,5]

Figure 7-7 Use of an AVE instruction on a 2-dimensional array.

Modulo (MOD) Instruction

The MOD instruction divides Source A by Source B and places the remainder in the
Dest. In the example shown in Figure 7-8, two constant values were used for the source
values. Tags could have been used. In this example the MOD instruction would divide 8
by 3 for an integer result of 2 with a remainder of 2. The remainder is put in the Dest tag.
The Dest tag name is Answer in this example.

il it ’ O
— — + Mhccldi

Figure 7-8 Use of a MOD instruction in RSLogix 5000.

156 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Negate (NEG) Instruction

The NEG instruction is used to change the sign of a value. If it is used on a positive num-
ber, it makes it a negative number. If it is used on a negative number, it makes it a positive
number. Remember that this instruction will execute every time the rung is true. Use
transitional contacts if needed. The use of a NEG instruction is shown in Figure 7-9.

If contact Inp_1 is true, the value in source A (Val_1) will be given the opposite sign
and stored in the Dest tag (Val_2). Note that in this example Val_1 contained 5 and the
NEG instruction changed it to —5 and stored it in Val_2.

e _t ’ Ml
— { Mingaba

e Y 1

Tt Yl

Figure 7-9 Use of a NEG instruction.

Square Root (SQR) Instruction

The SQR instruction is used to find the square root of a value. The result is stored in
a destination address. The source can be a value or the address of a value. Figure 7-10
shows the use of a SQR instruction. If the tag named Calculate is true, the SQR instruc-
tion will find the square root of the Source (64). The result will be stored in the tag at the
Dest (tag named Answer in this example). Note that a tag could have been used for the
Source.

sl liabe . L)
_— " anane e Wonf 1

Figure 7-10 Use of a SQR instruction in RSLogix 5000.

Compute (CPT) Instruction

The CPT instruction can be used for copy, arithmetic, logical, and number conversion
operations. The operations to be performed are defined by the user in the Expression
and the result is written in the Dest. Operations are performed in a prescribed order.
Operations of equal order are performed left to right. Figure 7-11 shows the order in

CHAPTER 7—MATH INSTRUCTIONS 157

which operations are performed. The programmer can override precedence order by
using parentheses.

Operation ‘ Precedence

() 1
ABS, ACS, ASN, ATN, COS, DEG, FRD, LN, LOG, RAD,

SIN, SQR, TAN, TOD, TRN 2
%% 3
— (Negate), not 4
*,/, MOD 5
— (Subtract), + (Add) 6
AND 7
XOR 8
OR 9

Figure 7-11 Precedence (order) in which math operations are performed. When precedence
is equal, the operations are performed left to right. Parentheses can be used to override the
precedence order.

Figure 7-12 shows the use of a CPT instruction. The mathematical operations in the
CPT are performed when the tag named Calculate is true. In this example a formula is
used to convert a Fahrenheit temperature to a Celsius temperature. The result of the
equation is put into the Dest (tag named Answer). The tag Temperature held a value of
212. When 212 is put into the equation, the result is 100, which the CPT instruction put
into the tag named Answer. Note that parentheses were used to assure that the subtrac-
tion was done before the multiplication and division.

sl wdinbe ¢ o
— _ ' g]

Figure 7-12 Use of a CPT instruction in RSLogix 5000.

It might be noted that the reverse of this formula, Temperature * 9/5 + 32, gives an
incorrect answer if Temperature is an integer even though the formula is correct. This
is because the processor uses integer arithmetic since all parts are integers. Changing to
Temperature * 9.0/5 + 32 gives the correct answer, since 9.0 is a real.

158 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

RELATIONAL INSTRUCTIONS

Relational instructions have many uses in programming. In most cases they are used to
compare two values. They can be used to see if values are equal, if one is larger, if one is
between two other values, and so on. Figure 7-13 shows relational instructions.

Instruction ‘ (VET:)

CMP Compare values based on an expression

EQU Test whether two values are equal

GEQ Test whether one value is greater than or equal to another value
GRT Test to see if one value is greater than a second value

LEQ Test to see if one value is less than or equal to a second value
LES Test whether one value is less than a second value

LIM Test whether one value is between two other values

MEQ Pass two values through a mask and test if they are equal

NEQ Test whether one value is not equal to a second value

Figure 7-13 Relational instructions.

Equal To (EQU) Instruction

The EQU instruction is used to test if two values are equal. The values tested can be
actual values or tags that contain values. An example is shown in Figure 7-14. Source A is
compared to Source B to test to see if they are equal. In this example Source A is equal to
Source B so the instruction is true and the output is on.

L P . T

[S<cos T —
AT £
M qur e gy g 51

Figure 7-14 Use of an EQU instruction.

CHAPTER 7—MATH INSTRUCTIONS

Greater Than or Equal To (GEQ) Instruction

The GEQ instruction is used to test two sources to determine whether Source A is greater
than or equal to Source B. The use of a GEQ instruction is shown in Figure 7-15.

Fan_Motor
o Local 20 Deta 5=
G Thas on B (A=) — —
Sounce A Ve 1
100
Sannce & Vo _2
100 »

Wabch List Taghase £ Scope | Vaiuo * | Descrphon
||+ Ve) lﬂm 100
E | j# Va2 MarProg 100

Figure 7-15 Use of a GEQ instruction.

159

Greater Than (GRT) Instruction

The GRT instr

uction is used to see if a value from one source is greater than the value

from a second source. An example of the instruction is shown in Figure 7-16. If the value
of Source A (Var_1) is greater than the value of Source B (Var_2), the output tag named
Fan_Motor will be energized.

F an_Mhcton
" sLocsl 20 Dets 5
0 4 Cemdlbar Thioen (A8) S —
Souce A Vet
2t -
Sourced Y 2
2000 -
4 ‘ »
-
Taghame o | Scope | Ve * | Descaphon
| |# Va1 MarProg 208
||+ Va2 MarFrog am 200 |

Figure 7-16 Use of a GRT instruction

160 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Less Than (LES) Instruction

Figure 7-17 shows an example of a LES instruction. A LES instruction can be used to
check if a value from one source is less than the value from a second source. If the value
of Source A (Var_3) is less than the value of Source B (Var_2), output Fan_Motor will be

energized.
¥ty Mehobor
LS 3 «Local 20 Data S
« Logs Than (Ay ' A —
Sionrte A e _J
T
onrts B i 2
W
\ MlainPoudine | ‘ »
Waich Lt T ag Hame v | Scope | Value » | Descophon

Fan_Molo MarFsog am 1
| levaz Mabge
e Vel Moy 7

Figure 7-17 Use of a LES instruction.

Limit (LIM) Instruction

LIM instructions are one of the more useful comparison instructions. One LIM instruc-
tion can do the work of two comparison instructions. A LIM instruction is used to test a
value to see if it falls between two other values. The instruction is true if the test value is
between the low and high values.

The programmer must provide three pieces of data to the LIM instruction when
programming. The first is a low limit, which can be a constant or an address that contains
the desired value. The address will contain an integer or floating-point value. The second
is a test value, which is a constant or the address of a value that is to be tested. If the test
value is within the range specified, the rung will be true. The third value is the high limit,
which can be a constant or the address of a value.

Figure 7-18 shows the use of a LIM instruction. If the value in Cycle_Timer.
ACC is greater than or equal to the Low Limit value (0) and less than or equal to the
High Limit value (10000), the rung will be true and the output Fan_Motor will be
energized. Note that tags could have been used for the Low Limit and High Limit
parameters.

CHAPTER 7—MATH INSTRUCTIONS 161

Cycie_Timge DN TO8

-q_ Tiemer O Dl 0 -

e Cycha_Timme

Puent 000
Accum 22518
Mt
Lt si.ooil & O Dt 5=
—t Ll Vet (CIRC) '

Loww Lisid 0

Fost Cycie T ACC
THENE -
gy Limit 10000

Figure 7-18 Use of a LIM instruction in RSLogix 5000.

Not Equal To (NEQ) Instruction

The NEQ instruction is used to test two values for inequality. The values tested can be
constants or addresses that contain values. An example is shown in Figure 7-19. If Source
A (Var_1) is not equal to Source B (5), the instruction is true and the output Fan_Motor
(<Local:2:0.DATA.5>) is energized.

Fan_Miotor
ey Local 20 Deta 5
0 st Mot Evpuani — —
Source A Va1
50 -
Sanece B $

Wakch Lut TagName & | Scope | Vi * | Descagaon
P] Ceven b s

Figure 7-19 Use of a NEQ instruction.

Compare (CMP) Instruction

The CMP instruction performs a comparison on the arithmetic operations that the pro-
grammer specifies in the Expression. The execution of a CMP instruction is slightly
slower than other comparison instructions. A CMP instruction also uses more memory

162 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

than other comparison instructions. The advantage of the CMP instruction is that it
allows the programmer to perform complex comparisons in one instruction. Figure 7-20
shows the use of a very simple comparison in a CMP instruction. Note that an EQU com-

parison instruction would have been quicker.

s Moo B
M «Local 2 0O Dala 5=
0 (OO ® —
Exprataon Ve | = Ve 2
-
1 |\ Manftoutine 4] | L
=
Wakh Lat Taghame ¢ | Scope | Vahao * | Gaucegece =

s Fan_Motor Mg e 1
e i
Rebesh l | |+ Va2 ManPhogam s

Figure 7-20 Use of a CMP instruction for a simple comparison.

Figure 7-21 shows the use of a CMP instruction to make a more complex comparison
in a formula. If the comparison is true, the output coil will be energized.

=g

Fan_lfiotor
otal 2O Data %=

& B e R L
Espraddion (Ve 1 " 10)- Vi _2 < Vir _J

#\M; 4 | L]
- TagName o |Secope | Vahan * | Deserpher
Fan,_Motor Mg Pengpan . 1
||+ Val M g ann 1%
| |+ Ve 2 MarProgas 150
| |+ Vel LR e 160

Figure 7-21 Use of a CMP instruction for a complex comparison in a formula.

LOGICAL INSTRUCTIONS

There are several logical instructions available. They can be very useful to the innovative
programmer. They can be used, for example, to check the status of certain inputs while

ignoring others.

CHAPTER 7—MATH INSTRUCTIONS 163

AND Instruction

The AND instruction is used to perform an AND operation using the bits from two
source addresses. The bits are ANDed and a result occurs and is stored in a third address.
Figure 7-22 shows an example of an AND instruction. Source A (Var_1) and Source
B (Var_2) are ANDed. The result is placed in the Dest tag Var_3. Examine the bits in
the source addresses so that you can understand how the AND instruction produced the
result in the Dest.

Source A ‘ Source B ‘ Result
0 0 0
1 0 0
0 1 0
1 1 1

Figure 7-22 Results of an AND instruction on the four possible bit combinations.

— _ A

— - o Dtz AME
St A Jall 1
SO] OO OO OO OO0 G 011 -
e £ M
SO UK 0D e e 0D O -
(vt o
SO 1N NN OO LIRS e G -

Figure 7-23 Result of an AND instruction on two source addresses. The ANDed result is
stored in Val_3.

NOT Instruction

NOT instructions are used to invert the status of bits. A 1 is made a 0, and a 0 is made a 1.
Figure 7-24 shows the result of a NOT instruction on bits.

Source ‘ Result
0 1
1 0

Figure 7-24 Result of a NOT instruction. Note that a 0 becomes a 1 and a 1 becomes a 0.

Figure 7-25 shows the use of a NOT instruction. If Sensor_1 is true, the NOT
instruction executes. Every bit in the number in tag Var_1 is NOTed (1’s complemented).

164 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

The result is stored in the Dest tag Var_2. Note that all Os from the source were changed
to 1s and all 1s were changed to Os.

A Lila = d
—_ i oime M0 F '
rce v |
SOOI CEN0 O 100 i1 | i O -
wrzf
I 1T M L RRR RSO0 1100 (R LE S

Figure 7-25 Use of a NOT instruction.

OR Instruction

Bitwise OR instructions are used to compare the bits of two numbers. Figure 7-26 shows
how each Source A bit is ORed with each Source B bit.

Source A ‘ Source B ‘ Result
0 0 0
1 0 1
0 1 1
1 1 1

Figure 7-26 Result of an OR instruction on bit states.

See Figure 7-27 for an example of how an OR instruction functions. In this example
Source A (Var_1) and Source B (Var_2) are ORed and the result is put in the Dest tag

Var_3.
e
] e &] r &
— f— s P esite I lgsiee Ol
Ouped A Jar 1
SHO000 G000 0100 G000 G000 0010 0010 001 &
ORECe 5 il .
200000 000 ODOD ODOD G000 OOt OO N0 -
Dt o
20000 0ON00 100 OO0 ODOD GOt 000 001 -

Figure 7-27 Use of an OR instruction.

CHAPTER 7—MATH INSTRUCTIONS

165

TRIGONOMETRIC INSTRUCTIONS

There are a variety of trigonometric instructions available. Figure 7-28 shows some trigo-
nometric instructions. The trigonometric instructions utilize radians in the calculations.
The radian is a unit of plane angle, equal to 180/n degrees, or about 57.2958 degrees.
It is the standard unit of angular measurement in mathematics.
The radian is abbreviated as rad. For example, an angle of 1.5 radians would be writ-
ten as 1.5 rad. Figure 7-28 shows how angles in degreees can be converted to rads and
how rads can be converted to degrees.

To convert from degrees to radians multiply by P1/180

Forexample 1°=1* =0.175 rad

To convert from radians to degrees multiply by 180/P|

: 1
For example 1radian=1"* = 57.2958

Pl
180"

80°
Pl

Figure 7-28 Conversion of degrees to radians and radians to degrees. Note that there are
CLX instructions to make these conversions.

The table in Figure 7-29 shows trigonometric instructions.

Instruction ‘

SIN

Use

Takes the sine of the source value (in radians) and stores the result in the destination

COs

Takes the cosine of the source value (in radians) and stores the result in the
destination

TAN

Takes the tangent of the source value (in radians) and stores the result in the
destination

ASN

Takes the arc sine of the source value and stores the result in the destination
(in radians)

ACS

Takes the arc cosine of the source value and stores the result in the destination
(in radians)

ATN

Takes the arc tangent of the source value and stores the result in the destination
(in radians)

Figure 7-29 Trigonometric instructions.

166 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

SIN Instruction

The SIN instruction takes the Sine of the Source value (in radians) and stores the
result in the Dest. To find the Sine of 45 degrees, we would first need to convert
45 degrees into radians. From the formula in Figure 7-28, we could calculate that
45 degrees would be equal to 0.785375 radians. Figure 7-30 shows the use of a SIN
instruction. Note that 0.785375 was entered for the Source value. This is 45 degrees in
radians. The result of the SIN instruction is put into the Dest tag (Answer). The Sine
of 45 degrees is 0.707.

sl it e . i
—' —- ¥ T]

Figure 7-30 Use of a SIN instruction.

We could utilize math instructions to do the degrees-to-radians conversion. Figure 7-31
shows a CPT instruction that is used to convert degrees to radians. The result of the CPT
instruction is then put into the Dest tag (Rads). The value of Rads was then used as the
Source value in the SIN instruction. Note that there are CLX instructions available to do
these conversions.

mi it .
— — 4 Comgube
Pl .
£ e
et ingt Lenorees vl I
mil it
— — 4 Sire
i " "mﬁ"
T W e
" Ayt oy
FI0EYE &

Figure 7-31 Use of a CPT and a SIN instruction. The CPT is being used to convert degrees
to radians. The SIN instruction then finds the sine of the angle. The CPT instruction was used
here to illustrate the use of a formula in logic.

CHAPTER 7—MATH INSTRUCTIONS 167

MATH CONVERSION INSTRUCTIONS

There are several math conversion instructions available. The table in Figure 7-32 shows
math conversion instructions.

Instruction (VET:)

DEG Converts radians to degrees

RAD Converts degrees to radians

TOD Converts an integer to a BCD

FRD Converts a BCD to an integer

TRN Removes the fractional part of a value

Figure 7-32 Math conversion instructions.

There are many other math instructions available to the programmer. If you study
the examples in the chapter, you should be able to use any of the other instructions.

QUESTIONS

Explain the terms source and Dest.

What is precedence in a math operation?

What has the highest precedence in a math operation?

Why might a programmer use an instruction that would change a number to a differ-
ent number system?

5. Explain the following logic:

W oo

168 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

6.

10.

11.

12.

Explain the following logic:

MmN ’ $0M .
- f— A T O Diiile s L '
Sir=ow L L
v f 0000

o~ SIUIED

1ol T A
S -

. Write a rung of ladder logic that would compare two values to see if the first is less

than the second. Turn an output on if the statement is true.

. Write a rung of logic that checks to see if one value is equal to or greater than a sec-

ond value. Turn on an output if true.

. Write a rung of logic that checks to see if a value is less than 212 or greater than 200.

Turn on an output if the statement is true.

Write a rung of logic to check if a value is less than 75 or greater than 100 or equal to
85. Turn on an output if the statement is true.

Utilize math instructions and any other instructions that may be helpful to program
the following application:

A machine makes coffee packs and puts 8 in a package. There is a sensor that senses
each pack of coffee as it is produced. It would be desirable to show the number of
packs that have been produced and the total number of packages of 8 that have been
produced.

Write a ladder diagram program to accomplish the following:

A tank level must be maintained between two levels. An ultrasonic sensor is used to
measure the height of the fluid in the tank. The output from the ultrasonic sensor is
0 to 10 volts. This directly relates to a tank level of 0 to 5 feet. It is desired that the
level be maintained between 4.0 and 4.2 feet. Output 1 is the inflow valve. The sen-
sor output is an analog input to an analog input module. Utilize math comparison
instructions to write the logic. Calculate the correct analog counts for the instruction.
Use the tag names shown in the table.

CHAPTER 7—MATH INSTRUCTIONS 169

Ultrasonic Sensor
Output 0-10 Volts

Inflow =
(OX?;\S:U E 5 Feet = 10 volts
Outflow
To
Process
0 Feet = 0 volts
Vo Tag Name Description Analog Counts
Ultrasonic Level_Sensor Analog Output (0-10 Volts) 0-32767
Sensor
Inflow Valve Input_Valve On or Off
(Outputl)
Start Start Momentary Normally
Open Switch
Stop Stop Momentary Normally
Closed Switch
Run Run BOOL

13. Utilize math statements to convert Fahrenheit temperature to Celsius temperature.

Hint: Tc = (5/9)*(Tf 32), where Tc = temperature in degrees Celsius and Tf =
temperature in degrees Fahrenheit

Utilize math instructions to convert radians to degrees.

170

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

14. Write a ladder logic routine for the following application. Utilize comparison
instructions.

This is a simple heat treat machine application. The operator places a part in a fix-
ture, then pushes the start switch. An inductive heating coil heats the part rapidly to
1500 degrees Fahrenheit. When the temperature reaches 1500 degrees, the coil
turns off and a valve that sprays water on the part is opened for 10 seconds to
complete the heat treatment (quench). The operator then removes the part and
the sequence can begin again. Note there must be a part present or the sequence
should not start.

/o Type Description

Part_Present_Sensor Discrete Sensor used to sense a part in the fixture
Temp._Sensor Analog /FXZngh‘;l;i[s sensor outputs 0-2000 degrees
Start_Switch Discrete Momentary normally open switch
Heating_Coil Discrete Discrete output that turns the coil on
Quench_Valve Discrete Discrete output that opens the quench valve

CHAPTER

Special Instructions

OBJECTIVES

On completion of this chapter, the reader will be able to:

= Explain some of the special instructions that are available and their use.
= Utilize file instructions.

= Use proportional, integral, derivative (PID) instruction.

» Utilize communication instructions.

= Utilize sequencer instructions.

» Understand the use of special instructions so that new instructions can be quickly
learned.

INTRODUCTION

ControlLogix has a wealth of instructions available to perform special functions. This
chapter will sample a few of the many instructions that are available. Once you under-
stand how to use a few of them, it will be easy to learn and utilize new ones.

FILE INSTRUCTIONS
Copy (COP) Instruction

COP instructions are used to copy values from one tag array to a different tag array.

One use of a COP command might be a process that can produce ten different kinds
of cookies. The recipe for each cookie is different. Each recipe could be in located in a
different array in memory. When the operator chooses the product, the correct recipe for
that product could be copied into the operating parameters.

171

172

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

There are three entries for a COP instruction: Source, Dest, and Length. Study
Figure 8-1. The Source is the tag name of an array that you want to copy. The Dest is the tag
name of an array where you would like the data copied. Length is the number of values that
you would like to copy. In Figure 8-2 (tag editor) the five (Length) values in Recipe_A[0]
through Recipe_A[4] are copied to Production_Recipe[0] through Production_Recipe[4] if
the rung becomes true.

e_1 . L8
i b ' Wi ¥ e ' '
T Rt ipwe AJ00
Tt PeoaiacBors B el
LT 95

Figure 8-1 A COP instruction copies data from one place in memory to another.

= Reope A {ses)
s Facpe_AJ0) 100
+ FRaope_AJl) 110
+ Recipe_ ALY 120
& Recps_ ALY 130
+ Recpe_Al4) 140
= Peoduction_Recpe (ees)
& Produchon_Recipef0) |
+ Producton_Recpe()
+ Procucmon_Recpe(2)
+ Producton_Recipe(3)
+ Prodhacton_Fecgel4)

Figure 8-2 Arrays in memory. A COP instruction could be used to copy the values from the
array named Recipe_A into the array named Production_Recipe.

One use of this would be to load recipes for different products. By loading different
parameters (numbers), a process can run differently. For example, the same machine
might be able to produce different chemicals on the basis of different ingredients and
process parameters. Different recipes (ingredients and process parameters) could be
loaded by having multiple COP instructions in a program.

Move (MOV) Instruction

The MOV instruction can move a constant or the contents of one memory location to
another location. This is a very useful instruction for many purposes. One example would
be to change the preset value of a timer. There are two values that must be entered by

CHAPTER 8—SPECIAL INSTRUCTIONS 173

the programmer: Source and Dest (see Figure 8-3). Source can be a constant or the ad-
dress of the data to be moved. Dest is the tag name to move the data to. In the example in
Figure 8-3 the number 212 was put in the tag named Cycle_Temp because Bit_1 is true.

et ; ANy
o f— . Bl

Figure 8-3 A MOV instruction.

Note that a COP instruction copies data bit by bit, whereas the MOV moves a value.
If a COP is used from a DINT to an INT array, the values may not be the same, but a
MOV will always keep values the same even moving between dissimilar data types.

Masked Move (MVM) Instruction

An MVM instruction is similar to a MOV instruction except that the source data is moved
through a mask before it is stored in the Dest. A mask is a very useful programming tool.
It allows the programmer to selectively control which bits are used in instructions. Source,
mask, and Dest must be entered for a MVM instruction. Study Figure 8-4. The values in
the Source and Dest are shown in binary to make the example more understandable. The
Mask value is shown in Hex (16#000000FF). The mask is an important concept in PL.C
programming. A mask value is used to control which bits are used in move, comparison,
and other types of instructions. The value 000000FF in hex would be 0000 0000 0000
0000 0000 0000 1111 1111 in binary. For example, if we are moving a number from the
tag named Number_1 and the first eight bits in the mask are 1s and the second half are Os
in the mask, only the first eight bits of the number in tag Number_1 will be moved to the
Dest. The rest of the bits will not be changed in the Dest. They will remain in the same
state they were before the move. The tag named Output_Number shows the result of this
masked move. Note that only the first eight bit conditions were passed through the mask
to the Dest result.

TR . AP
— f— v Nilmen o Nl
T Miursiber |
et G000 0000 0000 G010 1100 1000 G110 &
Vil LT
—— Wloul Nlustar
SPOD00 OO0 OO00 OO0 GODD GOooD 1000 MN10 =

Figure 8-4 A MVM instruction.

174 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

File Fill (FLL) Instruction

The FLL instruction is used to fill a range of memory locations in an array with a constant
or a value from a memory address. This could be used to put the same number in several
or all of the memory locations in an array. For example, we could put Os in all locations
when we started a process running. For a FLL instruction the programmer must enter
the Source, the Dest, and the Length (see Figure 8-5). The Source is a constant or a tag
for a CLX controller. The Dest is the name of the tag array you would like to fill. The
Length is the number of elements that you would like to fill. In this example the number
44 was the Source value, and it was put in all five of the array positions. Note that the ar-
ray could be longer or shorter than five memory locations.

il _ — :
-l f= £ Fill File |
SIOHINCE s W allue
Dot Owvdher _Amanf0)
Ll L
| \Mamboutuve [.
. TagName ¢ | Scope | Vahae o | Oowcron
Quncik W ghch - Bl HM“ "
- + bn_Value um aa
[Cheen | [~ Odwtew MusPoom (oee)
- - thm“m a3
+ Ouctor_Amayl? | MarPrognam rr
|+ Oeder_Anayf2] MarProgiam &
+ Qodor_imag(3] Marfrogam P
|+ Oeder_Aman{ 8] MarProgrom as

Figure 8-5 A FLL instruction. A FLL instruction copies data from one location in memory to
multiple locations.

File Bit Comparison (FBC) and Diagnostic Detect (DDT) Instructions

These instructions can be used to compare large blocks of data. For example, they could
be used for diagnostics to check current states against a table of what they should be. The
FBC instruction compares values in a bit file (Source) with values in a Reference data
file. The instruction then records the bit number of each mismatch in the Result array.
The FBC instruction operates on contiguous memory.

The DDT instruction is similar to the FBC instruction except that when it finds a
difference between the input file and the reference file it changes the reference file. The
user could develop a list of conditions for the process under operation. These can then be
compared to actual conditions for diagnostics and troubleshooting. The FBC instruction
could be used to make sure the actual conditions are the same as the desired conditions.

CHAPTER 8—SPECIAL INSTRUCTIONS 175

¥ iin = . FE
{ b File £90 COmtgpuiwigan in
rie N & f
o e e - A r 1
Bt Wes Afvay I
o | i f ol T E
atag
kil
N tult ol Ol Wy ol
o f

Figure 8-6 An FBC instruction.

The DDT instruction could be used to record the actual conditions in the reference file
for diagnostics.

The difference between the DDT and FBC instructions is that each time the DDT
instruction finds a mismatch, the instruction changes the Reference bit to match the
Source bit. The FBC instruction does not change the Reference bit.

F ol ; N |
N f DhimgradBic Delect '
T C i 1
bl S pr = LY ¥
o ST Met Apvinyl I
¥ e O o e I
R =
o
gt il ol LR ol
Ll =

Figure 8-7 A DDT instruction.

MESSAGE (MSG) INSTRUCTIONS

The MSG instruction can be used to communicate between PLCs. A MSG instruction
can be used to communicate with another CL controller, PLC5, PLC3, PLC2, as well as
SLCs. Appendix D explains the use of an MSG instruction.

PROPORTIONAL, INTEGRAL, DERIVATIVE (PID) INSTRUCTION

The PID instruction is used for process control. It is used to control properties such as
flow rate, level, pressure, temperature, density, and many other properties. The PID in-
struction takes an input from the process and controls the output. The input is normally

176

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

from an analog input module. The output is usually an analog output. PID instructions
are used to keep a process variable at a commanded setpoint.

A PID instruction typically receives the process variable (PV) from an analog input
and controls a control variable (CV) output on an analog output to maintain the process
variable at the desired setpoint.

Figure 8-8 shows a tank level example. In this example there is a level sensor that
outputs an analog signal between 4 and 20 mA. It outputs 4 mA if the tank is 0 percent
full and 20 mA if the tank is 100 percent full. The output from this sensor becomes an
input to an analog input module in the PLC (see Figure 8-8). The analog output from the
PLC is a 4-20-mA signal to a valve. The variable valve on the tank is used to control the
inflow to the tank. The valve is 0 percent open if it receives a 4-mA signal and 100 percent
open if it receives a 20-mA signal. The PLC takes the input from the level sensor and uses
the PID equation to calculate the proper output to control the valve.

| L

(Fas A O -
PLC CPU 'T;?IJ,’} ':;;U? Vahe Level Sensor
Module [Module
." J » PID
Setpoint '«i.- Ermor |Calculdbon »o

|

Feadback

Figure 8-8 A level control system.

Figure 8-9 shows how the PID system functions. The setpoint is set by the opera-
tor and is an input to a summing junction. The output from the level sensor becomes
the feedback to the summing junction. The summing junction sums the setpoint and the
feedback and generates an error. The PLC then uses the error as an input to the PID
equation. There are three gains in the PID equation. The P gain is the proportional func-
tion. It is the largest gain, and it generates an output that is proportional to the error
signal. If there is a large error, the proportional gain generates a large output. If the

, Summing Junction

Summing Junction Proportional Gain Calculation

Integral Gain Calculation
Derivative Gain Calculation

Feedback

Figure 8-9 A block diagram of the use of a PID instruction.

CHAPTER 8—SPECIAL INSTRUCTIONS 177

error is small, the proportional output is small. The proportional gain is based on the
magnitude of the error. The proportional gain cannot completely correct an error. There
is always a small error if only proportional gain is used.

The I gain is the integral gain. The integral gain is used to correct for small errors
that persist over time. The proportional gain cannot correct for very small errors. The
integral gain is used to correct for these small errors over time.

The D gain is the derivative gain. It is used to help correct for rapidly changing
errors. The derivative looks at the rate of change in the error. When an error occurs, the
proportional gain attempts to correct for it. If the error is changing rapidly (for example,
maybe someone opened a furnace door), the proportional gain is insufficient to correct
the error and the error continues to increase. The derivative would see the increase in
the rate of the error and add a gain factor. If the error is decreasing rapidly, the derivative
gain will damp the output. The derivative’s damping effect enables the proportional gain
to be set higher for quicker response and correction.

As you can see from Figure 8-9 the output from each of the P, I, and D equations
are summed and a control variable (output) is generated. The output is used to bring the
process back to setpoint.

Refer back to Figure 8-8. As you can see in this figure the feedback from the process
(tank level) is an input to an analog input module in the PLC. This input is used by the
CPU in the PID equation, and an output is generated from the analog output module.
This output is used to control a variable valve that controls the flow of liquid into the tank.
Note that there are always disturbances that affect the tank level. The temperature of the
liquid affects the inflow and outflow. The outflow varies also due to density, atmospheric
pressure, and many other factors. The inflow varies because of pressure of the fluid at the
valve, density of the fluid and many other factors. The PID instruction is able to account
for disturbances and setpoint changes and control processes very accurately.

MDD Ter Div . Ta

1 ‘ _ . i Ll ' 1
ol i'l: = My
it 000 -
F I L
MR Ter DN =1
‘N o Erl gl el et altier
i D Tag
et 2 ' artmibie ol
Fipidet b
elol Wariatie Oufoud Vallee
1L Wiz Ber g
il 50
Firudid % alhae
afyacirf 1 25000 D
ot e s W mtinibiie 1| S D

vlpnd % 150D &

Figure 8-10 Use of a timer DN bit to perform a PID instruction every 2 seconds.

178 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Figure 8-11 shows and describes the main PID parameters.

Operand ‘

Process variable

Type

SINT, INT, DINT,
REAL

‘ Format ‘

Tag

Description

Value that is being controlled. This is often the tag
that specifies the actual input that is monitored for
control.

Tieback

SINT, INT, DINT,
REAL

Immediate
or tag

Output of a hand/auto switch used to bypass the
output of a controller. Enter 0 if you do not wish to
use this parameter.

Control variable

SINT, INT, DINT,
REAL

Tag

Value that is sent to the final control device. If you
are using dead band, the control variable must
be REAL or it will be forced to 0 when the error

is in the dead band. This is normally the tag that
specifies the actual output that is used to control
the process.

PID master loop

PID

Structure

If the cascade control is being used with this PID
is a slave loop, the name of the master PID loop
is entered. Enter 0 if you do not want to use this
parameter.

Inhold bit

BOOL

Tag

This is the current status of the inhold bit from a
ControlLogix analog output channel to support
bumpless restart. Enter a 0 if you do not want to
use this parameter.

Inhold value

SINT, INT, DINT,
REAL

Tag

This is the data read-back value from a ControlLogix
analog output channel to support bumpless restart.
Enter O if you do not want to use this parameter.

Setpoint

Displays the current value of the setpoint

Process variable

Displays the current value of the process variable.

Output %

Displays the current value of the output percentage.

Figure 8-11

Main PID parameters.

Figure 8-12 shows and describes parameters that can be configured by selecting the
ellipses on the PID instruction.

Parameter

Setpoint

Enter

Value of the setpoint

Set output %

A percentage to output

Output bias

An output bias percentage

Proportional Gain (Kp)

The proportional gain

Integral gain (K;)

The integral gain

Derivative time (K)

The derivative gain

Manual mode

Select either the manual mode or the software manual mode. Manual
mode overrides software manual mode if both are selected.

Figure 8-12 Main PID parameters.

CHAPTER 8—SPECIAL INSTRUCTIONS 179

Figure 8-13 shows and describes additional PID configuration parameters.

PID equation Select independent gains when you would like the
three gains (P, I, and D) to operate independently.
Use dependent gain when you would like an overall
controller gain to affect all three gains (P, |, and D)

Control action Select either E=PV—SP (Error = Present Value —
Setpoint) or E=SP—-PV
Derivative of Select PV or Error. PV is used to eliminate output spikes

that result from setpoint changes. Error is used for fast
response to setpoint changes when overshooting can
be tolerated.

Loop update time Update time for the instruction.

CV high limit Enter a high limit for the control variable.

CV low limit Enter a low limit for the control variable.

Dead-band value Enter the desired dead-band value.

No derivative smoothing Enable or disable.

No bias calculation Enable or disable.

No zero crossing in deadband Enable or disable.

PV tracking Enable or disable.

Cascade loop Enable or disable.

Cascade type If cascade loop is enabled, select either slave or master.

Figure 8-13 Additional PID parameters.

Figure 8-14 shows and describes the alarms that can be set for a PID instruction.

Field ‘ Specify

PV high A value for a high alarm

PV low A value for a low alarm

PV dead band A value for an alarm dead band

Positive deviation A value for a positive deviation

Negative deviation A value for a negative deviation

Deviation dead band A value for a deviation alarm dead-band level

Figure 8-14 Alarm parameters.

180 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Figure 8-15 shows and describes parameters that can be used for scaling.

Field ‘ Specify

PV unscaled maximum The maximum PV value that is equal to the maximum unscaled
value received from the analog input channel for the PV.

PV unscaled minimum The minimum PV value that is equal to the minimum unscaled
value received from the analog input channel for the PV.

PV engineering units maximum | The maximum engineering units.

PV engineering minimum The minimum engineering units.

CV maximum The maximum CV value corresponding to 100%.

CV minimum The minimum CV value corresponding to 100%.

Tieback maximum The maximum tieback value that equals the maximum unscaled
value received from the analog input channel for the tieback value.

Tieback minimum The minimum tieback value that equals the minimum unscaled
value received from the analog input channel for the tieback
value.

PID initialized If scaling constants are changed during the run mode, turn this off

to reinitialize the internal scaling values.

Figure 8-15 Scaling parameters for the PID instruction.

One way to execute a PID instruction is to place it in a task that is configured to be
periodic. Set the loop update time (.UPD) equal to the periodic task rate. The PID in-
struction should be executed every scan of the periodic task.

If a periodic task is used, make sure that the analog input that provides the process
variable is updated at a rate that is significantly faster than the rate of the task. If possible,
the process variable should be sent to the processor at least five to ten times faster than
the periodic task rate. This helps minimize the time difference between the actual sam-
ples of the process variable and execution of the PID loop. For example, if the PID loop
is in a 500-ms periodic task, use a loop update time of 500 ms ((UPD = .5) and configure
the analog input module to produce its data at least every 50 to 100 ms.

Another way to execute a PID instruction is to put the instruction in a continuous
task and use a timer DN bit to trigger execution of the PID instruction. This method is
slightly less accurate.

PID Timing

The PID instruction and the sampling of the process variable need to be updated at a
periodic rate. The update time for a PID instruction is related to the process that is being
controlled.

An update time of once per second or even longer is usually sufficient to obtain good
control for slow processes such as temperature control loops. Faster loops, such as flow or
pressure loops, may require an update time shorter than every 250 ms.

Some applications, such as tension control on an unwinder spool, may require a loop
update time as fast as every 10 ms or less.

CHAPTER 8—SPECIAL INSTRUCTIONS 181

Derivative Smoothing

The calculation of the derivative term is enhanced by a derivative-smoothing filter. This
digital smoothing filter helps to minimize large derivative term spikes that can be caused
by noise in the PV.

The larger the value of the derivative is, the more aggressive the smoothing is.
Derivative smoothing can be disabled if the process requires very large values of de-
rivative gain (Kd > 10). Derivative smoothing can be disabled by selecting the No
derivative smoothing option on the Configuration tab.

Dead-Band Parameter

Dead band enables you set an error range above and below the setpoint where the
output does not change as long as the error remains within the specified range (dead
band). The dead band is used to control how closely the process variable matches the set-
point without changing the output. The use of dead band also helps to minimize wear and
tear on the final control device. The dead band extends above and below the setpoint by
the value you specify. Enter zero to inhibit the dead band. The dead band has the same
scaled units as the setpoint.

Zero Crossing

Zero crossing is a term that applies to dead-band control. When zero crossing is used, the
instruction uses the error in its computation as the process variable enters the dead band
until the process variable crosses the setpoint.

When the process variable crosses the setpoint, the error crosses zero and changes
sign. While the process variable remains in the dead band, the output will not change.
The dead band can be used without the zero-crossing feature by configuring it to the No
zero crossing for dead band option.

The Control variable must be REAL if you are using the dead band, or it will be
forced to 0 when the error is within the dead band.

Output Limiting

A percentage output limit can be set for the control output. If the instruction detects that
the output limit has been reached, an alarm bit is set and the output is prevented from
exceeding either the lower or the upper limit.

Feedforward or Output Biasing

Feedforward is an attempt to deal with known disturbances before they occur. In a
feedforward application a disturbance is measured and fed forward to the control loop so
that corrective action can be initiated before the disturbance can have an adverse effect
on the system response. Feedforward control can respond quickly to known and measur-
able types of disturbances.

An example would be the cruise control on a car. Cruise control enables a car to
maintain a steady speed. If the car begins to go up a steep hill, the car slows down below

182 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

the set speed. The error in speed causes more gas to be sent to the engine, which returns
the car to its original speed. A PID system would do a fine job of speed control in a cruise
control.

A feedforward system would attempt to predict the decrease in speed. If the car
could measure the slope of the road, it could open the throttle to send more gas as soon
as an increase in slope was encountered. It could do this before any slowing in speed
was sensed by the system. In this manner it would anticipate a speed decrease before it
occurred and provide a feedforward corrrection.

A bias value is typically used when no integral gain is used. The bias value can
then be adjusted to maintain the output required to keep the PV near the setpoint.
You can provide a feedforward value by feeding the .BIAS value into the PID instruc-
tion’s feedforward/bias value. The feedforward value represents a correction value fed
into the PID instruction before the disturbance has had a chance to affect the process
variable.

Cascading Loops

PID loops can be cascaded. Cascading is a control algorithm in which the output of one
control loop provides the setpoint for another loop. Cascade is used to control difficult
processes where minimal overshoot and quick stabilization are required.

Cascade control can be implemented by assigning the output in percent of a master
PID loop to the setpoint of a slave PID loop. Study Figure 8-16. This is a level control
system. The master PID loop is using level feedback and generating an error signal that is
used as the setpoint to the slave PID loop. The slave loop uses flow feedback and the set-
point from the master to control the flow valve. The slave loop automatically converts the
output of the master loop into the correct engineering units for the setpoint of the slave
loop, on the basis of the slave loop’s values for .MAXS and .MINS.

Flow
Feedback,! PID | Setpoint Error [PID _
'_ Slave | Master € Level Setpoint
[A
| y Level Feedback
Valve -
Level Sensor

Figure 8-16 Cascade control.

CHAPTER 8—SPECIAL INSTRUCTIONS 183

SEQUENCERS

Many industrial processes are sequential. A sequential process is made up of a series
of steps. Imagine an auto assembly line. This is a very sequential process. Many home
appliances work sequentially. Washers and dryers are examples of sequential control.

Originally many industrial machines were controlled by a drum controller. A drum
controller functions like a player piano, which is controlled by a paper roll with holes
punched in it. The holes represent the program or notes to be played. The position across
the paper roll indicates which note will be played. The position around the roll indicates
when each note will be played.

A drum controller is the industrial equivalent. The drum controller is a cylinder with
holes around the perimeter with pegs placed in the holes. There are switches that the
pegs hit as the drum turns. The peg turns, closing the switch that it contacts and turning
on the output to which it is connected. The speed of the drum is controlled by a motor.
The motor speed can be controlled. Each step must, however, take the same amount of
time. If an output must be on longer than one step, consecutive pegs must be installed.

Drum controllers have been around for centuries. Figure 8-17 shows an automated
musical organ that uses a roller that has small pins around the circumference to play the
notes of the song that is on the roller. This particular instrument has 20 possible notes.
This one has simple valve and reed mechanisms that are each activated by the pins. The
air passing through the reeds creates the notes. The rollers are called cobs. Each cob
plays a different song. This one is from about 1889.

Figure 8-17 Music organ (drum controlled). Note the pegs that activate the valves as the
drum is turned at slow speed.

184

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

The drum controller has some advantages. Drum controllers are easy to understand
and program. They are easy to maintain. To program a drum controller, a simple chart is
developed that shows which outputs are on in each step. Pegs are then installed to match
the chart. The pegs control when each output is on.

Sequencer Instructions

Sequencer instructions can be used for processes that are cyclical in nature. Sequencer
instructions can be used to monitor inputs to control the sequencing of the outputs. Se-
quencer instructions can make programming many applications a much easier task. The
sequencer is very similar to a drum controller.

Processes which have defined steps can be easily programmed with sequencer in-
structions. There are three main instructions available for programming sequencers: se-
quencer output (SQO), sequencer input (SQI), and sequencer load (SQL).

Sequencer Output (SQO) Instruction

Imagine a sequential process that has five steps. The states of the outputs for every step
are shown in Figure 8-18.

Look at step 0 in Figure 8-18. Step 0 in a sequencer is a special step. It is only true
when the controller initially is put into run mode. The sequencer will be in step 0. When
the sequencer is running and incrementing through the steps, it will not return to 0 after
step 5. It will return to step 1. Notice that if the process has five steps, there are actually
six steps in memory including step 0.

Outputs ‘ Step
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
0
On 1
On | On 2
On 3
On | On On 4
On | On | On | On 5

Figure 8-18 Table showing which outputs are on in which steps.

This simple system would be a good application for a sequencer instruction. An SQO
instruction would be used. Figure 8-19 shows a simple ladder diagram with a timer and
an SQO instruction. In this example a timer is used to increment the SQO instruction

through the steps.

CHAPTER 8—SPECIAL INSTRUCTIONS 185

Tl Timer SO0 Tiser & r TOM
o — — o— | — 1 Timor On Dallory g I '
Fimwew SO0 _Tmgr p=<D
st SO
Al 50 -

SG0_ Timer DN ’ 5

o — (— + Saquencsr Oulput ot L
At oy il Conmtiionafo]
Whmen FRS000I0 fHEE RedDi
{wpt gl Cand
Sl Vil e
sl R
L ol £ o
POrg B L.

Figure 8-19 Simple SQO instruction ladder logic.

The first entry you need to make in the SQO instruction is the name of an Array that
will hold the output states for each step. The tag name that is entered is the starting loca-
tion in memory for the output conditions for each step. In this example the Array name is
Output_Conditions[0].

The output conditions must be entered into the array in the tag editor. Study Figure 8-20.
The output states for each step are entered at the starting location Output_Conditions[0].
In this application there are no outputs on in step 0. When the SQO instruction runs, it will
only be in step 0 on initial startup. When the SQO instruction gets to step 5, it will go back
to step 1 and continue from there.

The step number is shown by the Position value in the instruction. This process has
five steps so the output states for the five steps of the process are located in elements
Output_Conditions[1] through Output_Conditions[5].

Note that this is actually six elements in memory. The first element is for step (POS)
0. Step 0 is the start position for the application. Sequencers start at step zero the first
time. When the SQO instruction reaches the last step, however, it will reset to step 1
(position 1).

= Duspur_Conitons
+ Ourpus_Comdinonafd]
+ Output_Coneibonafl]
+ Duput_Comclioma{ 3 290000 0000 0000 OOO00 0000 0000 0000 L1000
+ Dutpt_Comtitonafd) 290000 0000 0000 0000 0000 0000 0110 0100
- w_tmm 240000 0000 0000 OO00 OO0 0000 0111 1000

Figure 8-20 Output states in memory.

186

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Next a mask value is entered. The mask can be a tag in memory or a constant value. If
a tag name is entered for the mask value, the tag will hold the mask value.

If a constant is entered, the SQO instruction will use the constant as a mask for the
steps. In our example a hex number was entered (see Figure 8-19). The value that was
entered was 0000-FFFF. The eight hex digits represent 32 bits. Each bit corresponds
to one output in the SQO instruction. If the bit is a 1 in the mask position, the output is
enabled and will turn on if the step condition tells it to be on. If the bit in the step is a
1 and the corresponding mask bit is a 1, the output will be set. In this example the four
hexadecimal Fs represent 16 binary 1s in memory. The four hexadecimal Os represent 16
binary Os in the mask value. The values in the output steps (Output_Conditions) will be
passed through the mask value and then sent to the Dest. If the value in the mask is zero,
the Dest bit is unchanged. A value of 1 in the mask means that the output state from the
step will be sent to the Dest.

The Dest is usually the tag name of the outputs. In this example the outputs are in
the tag named Output_Card, which is an actual output card that has 16 outputs.

Remember that the output states for each step are located in the array tag named
Output_Conditions[1] through Output_Conditions[5].

When the SQO instruction is in Position 1 (stepl), the third output will be on. In the
next step the second and third outputs will be on.

A tag name must also be entered for Control. For this example the Control tag was
named Control_Tag. An SQO instruction stores status information for the instruction in
the control tag. An SQO, SQL, or SQI instruction uses multiple elements in memory. The
control tag has several bits that can be used: enable (EN), done (DN), error (ER), and so
on. The control element also contains the Length of the sequencer (number of steps) and
the current Position (step in the sequence). The current Position in the sequence is in
Control_Tag.POS in this example (see Figure 8-21).

¥ ag Nasw LY .-;l!.Pj

= Conteol_Tag [eas

4+ Coniol_TagLEN 1

% Contecl_Tag POS 2

Coniol_TagEN !
Conieoll_TagEU
Coniecl_Tag DN
Contsol_TagEM
Conivol_TagER
Conteoll_Tag LA
Contsoll_Tag N
Coniall_Tag FD

Figure 8-21 Memory organization for a SQO instruction control memory.

CHAPTER 8—SPECIAL INSTRUCTIONS 187

Length is the number of steps in the process starting at position 1. Position 0 is the
startup position. The first time the SQO instruction is enabled it moves from position 0 to
position 1 when the instruction is toggled. The instruction resets to position 1 at the end
of the last step.

Position is the location (or step) in the sequencer file from/to which the instruction
moves data. In other words, Position shows the number of the step that is currently ac-
tive. The value of Control_Tag.POS is 2 in Figure 8-21. This would mean that the SQO
instruction would have moved the output data from Output_Data[2] to the output mod-
ule when it incremented the Position from 1 to 2.

In Figure 8-22 a 10-second TON timer is used as the rung condition to the SQO
instruction. The SQO instruction must see a transition from true to false to increment
the Position. Note that the SQO_Timer.DN bit is used to energize the SQO instruction.
Every time the timer ACC value reaches 10 seconds, the timer DN bit forces the SQO
instruction to increment the .POS (Position) member of the Control tag and move to the
next step. That step’s outputs are turned on for 10 seconds until the timer DN bit enables
the SQO instruction again. The SQO instruction then moves to the next step and sets
any required outputs. Note that the timer DN bit also resets the accumulated time in the
timer to 0 and the timer starts timing to 10 seconds again. When the SQO instruction is in
the last step and receives the EN bit again, the SQO instruction will return to step (Posi-
tion) 1 (not 0).

Stort_Timae DO _Tinge r oM 1
s — | — — | — s Timar On Daliay — I
Timey 0 Tear § "
L] NIOND -
A 281G -
20 Tiseiw DN . . .
r ﬁ [— * Lat o g '-r'.'-! r ‘.‘l
Lot bl aeiBer
- 160000 e N
{wrst vl ol
i Lnlas
ol ortrgl_Tmg
L = Se
=l ..
L
i cagtme | “ »
I g [-dﬂ -

Figure 8-22 Ladder logic for an SQO instruction.

188 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Sequencer Input (SQI)_Instruction

Every step was the same length of time in this example (10 seconds). In most indus-
trial applications there are specific input conditions that need to be met before steps are
incremented.

An SQI instruction can make it very easy to set up the input conditions to control
moving from step to step. Figure 8-23 shows an SQI instruction.

I T el T '
Arvary Desired Ingeut i | S
Whmwsh pln e
G Mgl 1Nt i
il 2 1 Dl

i B ol T
W -

o 4 =
Figure 8-23 An SQl instruction.

Note that in the SQI instruction in Figure 8-23 we have to give the instruction the
name of an Array that will hold the input conditions for each step. In this example De-
sired_Input_Conditions[0] was entered for the name of the Array. A Source also has to be
entered. The Source could be the tag name of an input card. The states of the inputs on
the card would then be compared to the current location (Position) in the Array of input
conditions.

If they are equal, the instruction is true. The true condition can then be used as a
rung condition to an SQO instruction. When the SQO instruction sees the transition,
the Position would be incremented to the next Position (step). The SQO and SQI
instructions share the same Control tag so the Position is incremented for both. Real _
Input_Conditions entered as the Source tag.

The Length of this sequence is 5.

The desired input conditions to increment from step 0 to step 1 are entered into
Desired_Input_Conditions[0] using the tag editor (see Figure 8-24). Remember that
the sequencer will initially begin with step 0. In this example there are all Os in Desired_
Input_Conditions[0]. If all of the inputs are false, the instruction will increment to
position 1.

The rest of the desired input conditions are entered as shown in Figure 8-24. Note
that step 1 requires a 1 in the first position to increment to the next step, step 2 requires a
1 in the second position to increment, and so on.

CHAPTER 8—SPECIAL INSTRUCTIONS 189

= Dauwad_bnpul_Condion [=an}
+ Dowed_lnput_Condiiona{l]
+ Douved_lnput_Condionaf2]
+ Denved_lnpur_Condimonal)
+ Dewed_bnput_Condtonafd]
+ Dowed_lnput_ CondionafS]

R R R TR S Y
- AF k-4 1F 1k

Figure 8-24 Input condition table. Note that if we are presently in step 3, we would need real-
world inputs 1 and 2 to be true in order to match our desired input conditions to increment to
step 4.

Figure 8-25 shows the current states of the bits of the Source tag (Real_Input_
Conditions). In this example the current state is that the second input is true. If the SQI
instruction were in step 2, the real-world input states from Real_Input_Conditions would
equal Desired_Input_Conditions[2] and the instruction would be true.

+ Reoal_lngut_Conditons 290(

Figure 8-25 Current input states in the tag named Real_Input_Conditions.

The mask value in an SQI instruction is just like the SQO instruction mask value. The
mask can be a tag name in memory or one word (32 bits) in memory. In this example a
hex constant was entered (0000-FFFF). The eight hex digits correspond to 32 binary bits.
If a bitis a 1 in the mask, that input is enabled. The Source word (usually real-world input
conditions) is passed through the mask value and compared to the current step (word) in
the file. In this application we are only interested in the states of the first 16 inputs. The
0000-FFFF means the first 16 inputs are used and that the last 16 (0000 0000 0000 0000
11111111 1111 1111) are ignored.

Next the Source must be entered. The Source is often the tag name of the real-world
inputs. In this example the Source tag name is Real_Input_Conditions. In this example
it’s an alias-type tag for an input module with 16 inputs. The states of these real-world in-
puts will be compared to the desired inputs in the present step. If they are the same, the
SQI instruction is true; this causes the SQO instruction to increment to the next step by
incrementing the Position value in the Control tag.

A tag name must also be entered for Control. Control is the location where the SQC
instruction stores status information for the instruction. There are several bits that can
be used: EN, DN, ER, found (FD), and so on. The Control tag also contains the Length
of the sequencer (number of steps) and the current Position. Position is the location (or
step) in the sequencer file from/to which the instruction moves data. In other words,

190 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Position is the step that is currently active. In order to stay synchronized, the SQI and
SQO instructions must use the same Control tag.

Figure 8-26 shows one method of programming a sequencer using an SQI and an
SQO instruction. The SQI instruction is used to compare the real-world input conditions
in the Source (Real_Input_Conditions) with the programmed step conditions in the Ar-
ray tag named Desired_Input_Conditions. Note that the Position value in the instruction
is currently 2 so the SQI instruction would be comparing the Source input conditions to
Desired_Input_Conditions[2]. If they are equal, the SQI instruction is true, energizing
the SQO instruction which then increments the Position value to 3 and outputs the states
from Output_Conditions[3] to the Dest (Output_Card). Note that when the Position was
incremented in the Control tag, it was incremented for the SQO and the SQI instructions
because they share the same Control tag.

idaC el INDLE ' 4 SulmOiasincar Oulpiuf i T

Aavary Dirginogd iyl k[0 o vt rltcrz0]
Nhma TSRO0 Nl 1600000 e (TN
Orce e gl (R = HEE wr ot ol Lard
icall 2 0 Dl “LOCH Ll
(il Bl gintrol_Tag ol gl Te
L gl Lo o L.
Pk et - ™ b e 4 -

Figure 8-26 SQl and SQC instructions.

Resetting the Position Value of an SQO Instruction

Each time the controller goes from program to run mode, the SQO instruction clears
(initializes) the .POS value. A RES instruction could also be used to clear the position
value (POS = 0).

Sequencer Load (SQL) Instruction

The SQL instruction can be used to load reference conditions into a sequencer array.

SHIFT INSTRUCTIONS

A shift register is a storage location in memory. These storage locations can typically hold
32 bits of data, that is, 1s or 0s. Each 1 or 0 could be used to represent good or bad parts,
the presence or absence of parts, or the status of outputs. Many manufacturing processes
are very linear in nature. Imagine a bottling line. The bottles are cleaned, filled, capped,
and so on. This is a very linear process. There are sensors along the way to sense for the
presence of a bottle, there are sensors to check fill, and so on. All of these conditions
could easily be represented by 1s and 0Os.

CHAPTER 8—SPECIAL INSTRUCTIONS 191

Bit Shift Left (BSL) Instruction

Figure 8-27 shows an example of the use of a bit shift left (BSL) instruction. Array is the
name of an Array tag name. Control is the name of the Control tag that the instruction
will use to keep track of information. Source Bit is the tag name of the bit that will be
shifted into the array. Length is the number of bits to be shifted. Figure 8-28 shows how

a BSL operates.
&5y
14 e e 1 In
b Agviey DINT
oy - Ll ongrol_ T i
werte i P
L =
Figure 8-27 A BSL instruction.
Memory Before 76543210
- . .1.0.0.1.1.0.00
' R
— i : .
1) Thesebits shift let | 1]
UL bit Input_1
o MemoyAter =~ 76543210
0/0/1|/1/0|/0|0|1

Figure 8-28 A BSL instruction on memory.

Shift registers essentially shift bits through a register to control I/O. Think of a bot-
tling line. There are many processing stations; each station could be represented by a bit
in the shift register. Each station should operate only if there is a part present that re-
quires this station. As the bottles enter the line, a 1 is entered into the first bit. Processing
takes place. The stations then release their product, and each product moves to the next
station. The shift register also increments. Each bit is shifted one position. Processing
takes place again. Each time a product enters the system, a 1 is placed in the first bit. The
1 follows the part all the way through production to make sure that each station processes
it as it moves through the line. There is also a bit shift right (BSR) instruction. Note that
there are many bit instructions available.

192

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

File Shifts

In addition to bit shift instructions, there are shift instructions that can shift whole ele-
ments in arrays. There are several shift instructions available. The table in Figure §-29
shows some bit and file shift instructions.

Instruction ‘ Operation

BSL Bit shift left

BSR Bit shift right

FFL First-in, first-out (FIFO) load
FFU First-in, first-out (FIFO) unload
LFL Last-in, first-out (LIFO) load
LFU Last-in, first-out (LIFO) unload

Figure 8-29 Bit and file instructions.

LOAD INSTRUCTIONS
FIFO Load (FFL) instruction

One use of load and unload instructions is order entry and order processing. Imagine a sys-
tem where the operator enters orders into an array and the machine takes the orders one at
a time and produces the products that were ordered. See Figure 8-30. When the operator
enters an order it would be placed into the Source tag specified by the FFL instruction.
When the FFL instruction is enabled, it loads the Source value into the position in the FIFO
identified by the Position value. The instruction loads one value each time the instruction is
enabled, until the FIFO is full. Typically, the Source and the FIFO are the same data type.

W 4 AT | e M

i ¥-iod 3 —1

Figure 8-30 An FFL instruction.

FIFO Unload (FFU) Instruction

The FFU instruction is usually used in tandem with an FFL instruction. The FFL in-
struction is used to load the orders into the array, and the FFU instruction is used to
take one order out of the array at a time in a first-in, first-out manner. The use of a FFU
instruction is shown in Figure 8-31. Note that the same tag was used for the FIFO array
and the Control tag in both instructions. Note also that the Length is the same in both.
Because the same Control tag is used for both, they will work together. If the Position

CHAPTER 8—SPECIAL INSTRUCTIONS 193

is incremented by the FFL instruction or decremented by the FFU instruction, it will
change for both so they remain coordinated.

rp [TTlE N -
i II " W -. il » - III
St Nhgiw By a1 Nl

. i Fal Tag

Figure 8-31 An FFU instruction.

JUMP INSTRUCTIONS
Jump-to-Subroutine (JSR) Instruction

Figure 8-33 shows an example of a [SR instruction. If Sensor_2 is true, the JSR instruc-
tion will execute the routine named Manual_Mode.

&% Main T ol
B rharivogy g
& Program Tags ‘

Ly b B m
b Ml s onaltirm Hookre YNiwme Sharwan Whoche
__'I: Miatasl Micele

argoE SN

Figure 8-32 A Jump-to-Subroutine (JSR) instruction. Note in the left of the figure that Man-
ual_Mode is a routine in the main program.

Jump (JMP) Instructions

JMP instructions can be used to jump to a different place in the logic. Figure 8-33 shows
an example. Note the JMP instruction in the first rung. A label is used to specify the label
to jump to. In this example the label name is Alt_1. If contact Sensor_1 is true in the first
rung, the processor will jump to the rung that contains the label Alt_1. In this example it
only jumps over one rung. A JMP can jump over multiple rungs.

Saeriaie TR
'R i
e 2 Faul 5 Mhctoe 1
AR 0 Fortyp Al

Figure 8-33 A JMP instruction and a label (LBL) instruction.

194 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

CONTROL INSTRUCTIONS
Master Control Reset (MCR) Instruction

MCR instructions are used in pairs. An MCR instruction can disable all rungs between
the MCR instructions.

Figure 8-34 shows an example. When an MCR zone is enabled, the rungs in the
MCR zone are scanned for their true or false conditions. When an MCR instruction is
disabled, the controller still scans rungs within the MCR zone. Scan time is reduced be-
cause nonretentive outputs in the zone are disabled. The rung-condition-in is false for all
the instructions inside of the disabled MCR zone.

Considerations for MCR Zones

MCR zones must be ended with an unconditional MCR instruction.

An MCR zone cannot be nested in another MCR zone.

Do not jump into an MCR zone. If the zone is false, jumping into the zone will acti-
vate the zone from the point to which you jumped into the zone to the end of the
zone. An MCR instruction does not need to be used to end the zone if the MCR
zone continues to the end of the routine.

The MCR instruction is not a substitute for a hardwired master control relay for emer-
gency-stop capability. You should still utilize a hardwired master control relay.

il _% Tortyg Al Ml Laghe

Figure 8-34 Use of MCR instructions.

Loop (FOR) Instruction

A FOR instruction can be used in any routine. A FOR instruction cannot be used to call
the main routine.

When enabled, the FOR instruction repeatedly executes the routine until the Index
value exceeds the Terminal Value. The FOR instruction cannot pass parameters to the
routine. Each time the FOR instruction executes the routine, it will add the Step Size to

CHAPTER 8—SPECIAL INSTRUCTIONS 195

the Index. An excessive number of repetitions can cause the controller’s watchdog to time
out; this causes a major fault.

Study Figure 8-35. When contact Sensor_1 is true, the FOR instruction repeatedly
executes the routine named Loop_Routine and increments Tag_5 by 2 each time (Step
Size). When Tag_5 is > 9 or a BRK instruction is enabled, the FOR instruction will quit
executing the routine named Loop_Routine.

HiowBive Mot 00D ROLEINS

e 1L

Feltiml o milee
Severan 0 sl ¥

My Si3e

Figure 8-35 A FOR (loop) instruction.

Return (RET) Instruction

The use of a RET instruction is shown in Figure 8-36. When an RET instruction is en-
abled, it returns to the FOR instruction. The FOR instruction increments the Index value
by the Step Size and executes the subroutine again. If the Index value exceeds the Termi-
nal Value, the FOR instruction completes and execution moves on to the instruction that
follows the FOR instruction.

Figure 8-36 A RET instruction.

Break (BRK) Instruction

The BRK instruction can be used to interrupt the execution of a routine that was called
by a FOR instruction. When enabled, the BRK instruction exits the routine and returns
the CPU to the instruction that follows the FOR insruction. If there are nested FOR in-
structions, a BRK instruction will return control to the innermost FOR instruction. The
use of a BRK instruction is shown in Figure 8-37.

i 5 Tipiars !

Figure 8-37 A BRK instruction.

196 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Get System Values (GSV) and Set System Values (SSV) Instructions

The GSV and SSV instructions get and set controller status data that is stored in ob-
jects. The controller stores status data in objects. There is no status file, as in the PLC-5
processor.

When enabled, the GSV instruction retrieves the specified information and places
it in the Dest. When enabled, the SSV instruction sets the specified attribute with data
from the Source.

Figure 8-38 shows an example of a GSV instruction. It is being used to acquire the
proportional gain (PositionProportionalGain) for the X_axis. The instruction will place
the value into the Dest tag (Present_PID_Gain_X).

il ok wloar

imzz Yt e A
Fefare ¢ Nimew M Axid
AR ule Yinrsw Fos@orE ogoe Bl
it Fredert P Gaih X

Figure 8-38 A GSV instruction.

The SSV instruction can be used to change controller data. Figure 8-39 shows
the use of an SSV instruction to set the value of PositionProportionalGain for the
X_Axis.

{ Sal tor W aile] I
i Yig= A
PisEamce N WA wiig
L2l le Narrtw PG ROnRY S OorEG Gl el

Sl ¥ i X

Figure 8-39 An SSV instruction.

When you enter a GSV/SSV instruction, the programming software displays the valid
object classes, object names, and attribute names for each instruction. For the GSV in-
struction, you can get values for all the attributes. For the SSV instruction, the software
displays only those attributes you can set.

Use the GSV and SSV instructions carefully. Making changes to objects can cause
unexpected controller operation or injury to personnel.

CHAPTER 8—SPECIAL INSTRUCTIONS 197

EVENT Instruction

The EVENT instruction is used to execute an event-type task (see Figure 8-40). The
name of the event-type task must be entered into the instruction. Each time the instruc-
tion executes, it triggers the event task that is specified by the instruction. When using an
EVENT instruction, make sure the event task is given enough time to complete its execu-
tion before it is triggered again. If not, an overlap will occur. If an EVENT instruction is
executed while the event task is already executing, the controller increments the overlap
counter but it does not trigger the event task.

- L
tigpged Dl T] .

Tach Reitar? Roubimw

Figure 8-40 An EVENT instruction.

This chapter has covered a small sample of the many special instructions that are avail-
able. If you can understand and use the instructions in this chapter, you will be able to
learn new instructions very easily. If you have a special need in an application, the odds
are good that an instruction is available to meet that need. The instruction help file in
RSLogix 5000 is a great source of available instructions and their use.

QUESTIONS

1. What instruction could be used to fill a range of memory with the same number?
2. What instruction could be used to move an integer in memory to an output module?
3. What would the Dest result be in the table below?

Source

Mask value 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

Dest

What instruction could be used to move data if it desired to mask some of the bits?
What does PID stand for?

What does the proportional gain do?

What does the integral gain do?

What does the derivative gain do?

If an SQO’s Control Tag’s Length value is 5 and its Position value is 3, what values are
being output to the output card, on the basis of the Array shown below?

© P o LUk

198 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

10.
11.
12.

13.

14.
15.
16.
17.

= Durpur_Conditons lses) |
+ Dutpu_Comdtionafdl 240000_0000_0000_0000_0000_0000_0000_0010
.- WI 290000_0000_0000_0000_0000_0000_0000_0100
+ Ouiput_Condionef2] 240000_0000_0000_0000_0000_0000_0000_0110
+ Duspe_Comcibionaf3) <#0000_0000_0000_0000_0000_0000_0000_ 1000
+ Duspns_Comtionafd) 240000_0000_0000_0000_0000_0000_0110_0100
» Duspn_Comdiona(®) 240000_0000_0000_0000_0000_0000_0111_1000

Describe the operation of an SQO.
Describe the operation of an SQI.

What are at least two advantages of SQO and SQI instructions over a traditional me-
chanical drum controller?

What instruction might be used to skip several rungs of logic under certain
conditions?

Which instruction should be used to execute logic five times?

Which instruction could be used to return from a routine to a FOR instruction?
Which instruction could be used to change a system value?

Which instruction can be used to execute a task?

CHAPTER

Structured Text Programming

OBJECTIVES

On completion of this chapter, the reader will be able to:

= Explain the basics of the structured text language.
= List at least three benefits of structured text.
= Understand structured text routines.

» Utilize structured text to develop routines.

INTRODUCTION

Ladder logic has been the overwhelming choice for PLC programming since PLCs
were developed. Additional languages were specified by an international standard (IEC
61131-3). These languages are rapidly gaining in popularity and use. Structured text (ST)
is one of the languages in IEC 61131-3. ST programming is more of a typical computer
language than ladder logic. It is very similar to languages that are used in many industrial
devices such as robots, vision systems, and so on. Structured text programming is also
used within other PLC languages. The best way to learn the material in this chapter is to
read the chapter and then work on the chapter questions before trying to write and test
actual ST programs.

OVERVIEW OF STRUCTURED TEXT

Structured text language resembles C, Basic, Pascal, and even visual basic language. People
are often most comfortable with the first programming language they learn or the one they
have used the most. People who have used computer programming languages for other
devices often believe that ST is the easiest language to use for programming PLC logic.

200

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

ST programs are written in short English-like sentences. This makes ST programs
very readable and easy to follow and understand. ST programming is well suited for ap-
plications requiring complex mathematics or decision making. ST is also concise. An ST
program for an application would be much shorter than a ladder logic program, and the
ST logic would be easier to understand. Learning ST will help you program many indus-
trial devices.

Benefits of ST

= People who have programmed a computer language can readily learn ST.
» Programs can be created in any text editor.
= Runs as fast as ladder logic.

* Is concise and easy to understand.

Can be used for all or a portion of an application’s logic.

FUNDAMENTALS OF ST PROGRAMMING

A short ST program is shown in Figure 9-1. This simple routine will be used to illustrate
the sentence-like structure of ST programs. Don’t worry about understanding all of the
syntax. The rest of the chapter will cover ST programming in detail.

The logic in the Figure 9-1 program has two variables (tags), named Temp and Flow,
and two outputs, named Pump and Green_Light. Temp, Flow, Pump, and Green_Light
are all tags in a ControlLogix (CL) project. This routine controls the pump, flow, and a
green_light.

The routine uses IF statements to make decisions. The first portion of logic compares the
value of the Temp tag. If Temp is greater than or equal to 100 and less than 200, then Pump
is turned on, the Flow variable (tag) is set to a value of 45, and Green_Light is turned on.

Else if (ELSIF) Temp is less than 100, Pump is turned off, Flow is set to 20, and
Green_Light is turned off.

If neither of those conditions is true, then the Else is true and Alarm_Light is
turned on.

IF Temp >= 100 & Temp < 200 THEN
Pump := 1; Flow := 45; Green_Light := 1;
ELSIF Temp < 100 THEN
Pump := 0; Flow := 20; Green_Light := 0;
ELSE
Alarm_Light := 1;
END_IF:

Figure 9-1 ST logic.

CHAPTER 9—STRUCTURED TEXT PROGRAMMING 201

ST logic is easier to understand than ladder logic. ST is not case sensitive. Tabs and
carriage returns should be used to make programs clear and readable. They have no effect
on the execution of the program, but they can really help make it more understandable.
Indentation was used in the program in Figure 9-1 to make a program more understand-
able. It makes it much easier to follow the logic. Note that if this logic were created in a
routine, it would have to be called from the main with a JSR instruction for the routine to
actually run.

PROGRAMMING ST IN CONTROLLOGIX

A ST program is a routine within a ControlLogix project. If you right click the mouse
button on the main program icon, it will give you the option of adding a new routine.
Figure 9-2 shows the initial screen for creating a new routine. In this example the name
Structured_Text_Stop_Light was entered. Next the language Type is chosen from the
drop down menu in the Type box. In this example Structured Text was chosen.

= 455 Controler CLX_Project = ";"f"” Qx_Promct
&) Cortrolar Yo B Controier T
I Controler Fault Matclior . “:':t ::::rda
1 Powssr 4l Maraier bt
P = L8 ManTad
S T T | i
5§ Marfrogam | Progyam Tags
I Unnchwdubed Progr ame = - Marfotne
Nare Samactuped_Tent_Shog o= =
55 Motien, Groups Is L | ont_Shop_Light -] u";;:f Rnx:.l::;!:‘l_lm e
."‘M“C"m fotis Descrpton Carcel § Metyon Grogn
oy | 1 Ursgeagedd Auws.
B Duta Types) |] Trencks
L U D | = 5 Dabs Typws
+ O srgs Tyom) swucturnd Tewt =] 3 Uoee-Oofed
& o — + 0
B Modkie-{ud red In Program [;'ﬁagm - ey - Oefred
1O Corfigs stee e .Wmm*m

Figure 9-2 On the left is the Controller Organizer. If you right-click on MainProgram, you can
create a new routine. In the center is the New Routine configuration screen. Note that Struc-
tured Text was chosen for the language Type. The figure on the right shows the Controller
Organizer after the new routine was created. After the new routine is chosen, you can click
on the name of the routine in the main program list and the screen shown in Figure 9-3 will
appear.

The program code can be entered into the ST entry screen. A very simple one-
statement routine was entered in Figure 9-3. Green_1 is a tag that was created in the tag
editor. Green_l1 is a discrete output. This simple logic would set the value for Green_1
to 1 (true) when this routine is run. The output assigned to Green_1 output would be
turned on. The := is used to change the value of whatever tag is on the left to the value
shown on the right. This is called an assignment statement. Almost all program lines
must end with a semicolon (;). This will be explained later in the chapter.

202 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

RSLogix 2000

sl=al 8

CLX Project [1756-L55]" - [MainP rogram

= 25 Controler CLX_Propect -
P Cortroller Tags i
L2 Controlber Fandt rardier
L o U Handies

= 3 Tasks ~

[Ready

Cresn L .= 1,

tl 2 J\Svuctw. £ ¢ | | *]

Figure 9-3 A simple program to turn output Green_1 on.

Note that to run, this routine would need to be called by the MainRoutine (see
Figure 9-4). Note that a JSR instruction was used to run the structured text routine.

mwmmwc—uumrﬁmw

gl‘lill__] k || @ v |

0. ®RuN

(1 I\ Svuchued_Tedt_ \Mamdoutme ¢ | |
ow robre D Rurg 0of | PP MO

Figure 9-4 A JSR instruction being used to call (run) the ST routine. Note that in this example,
the JSR will only be executed while the Start contact is true.

CHAPTER 9—STRUCTURED TEXT PROGRAMMING 203

Note: A well-planned job is half done. It is wise to preplan the application and program-
ming before you start writing the program. How many I/O will there be? What tags will
be required, and what types will they be? What would appropriate names for all of the
tags be? It will ease your task if you create the tags before you begin to write a program.
You are not required to create tags first, but it will make programming and troubleshoot-
ing less frustrating.

Assignment Statements

Assignment statements are used to assign a value to a tag. The example below would as-
sign a value of 115 to the tag named Temp.

Temp := 115;
The generic example of an assignment statement is shown below.
Tag := value or mathematical expression;

Tag on the left in the equation above represents a variable or tag that is being assigned
anew value. A tag can be a Boolean (BOOL)-, single integer (SINT)-, an integer (INT)-,
a double integer (DINT)-, or a real (REAL)-type tag. The DINT is the default integer
type and is the one that should normally be used for integers. The := is the assignment
operator. Note that you cannot just use the equal sign. You must use a colon followed by
the equal sign. The expression on the right side of the equation is used to represent the
value that will be assigned to the tag. An expression can be a constant value (a number),
or it could be a tag of type BOOL, SINT, INT, DINT, or REAL. The last thing in the line
is the semicolon. You must have a semicolon at the end of the line. In fact, almost all lines
in a ST program must be terminated with a semicolon. The most common error in ST
programming is forgetting the semicolon.

Study the examples below. The first example assigns a value of 212 to the tag named
Temp. The second example uses a tag (variable) to assign a value to Temp. The third
example shows that math statements can also be used in assignment statements. In this
example Var_l is being assigned the value of Var_2 multiplied by 2.

Temp := 212;
Temp := Var_1;
Varl := Var_2 * 2;

Documenting Logic with Comments

Comments should be used in programs. They help make programs more understand-
able. They also help reduce the time and frustration of troubleshooting an application.
They help a technician understand what the programmer intended. A comment can ap-
pear anywhere in a program line or on a line by itself. Figure 9-5 shows the format for
various types of comments. Figure 9-6 shows examples of some of the ways comments
can be used.

204 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

On a line without instructions // Comment

Or (* Comment *)
At the end of a line of ST /* Comment */
Within a line of ST (* Comment *)

/* Comment */

On more than one line (* Start of comment end of comment *)
/* Start of comment end of comment */

Figure 9-5 Table showing possible format for comments.

// This is an example of a comment at the beginning of a line.

IF Temp > 100 THEN // Comment at the end of a line

—_

Temp := 212; /* Comment at the end of a line — different format */

Pump := 1; (¥* Comment at end of a line — different format*)

IF S1 (* Comment within a line) & S2 (* Comment within a line) THEN

IF Temp2 = 205 /* Comment within a line — different format */ THEN

N ojla|lhh|lw(N

(* Comment on more than one line. This is an example of a comment
that takes up more than one line in a program *)

8 /¥ Comment on more than one line. This is an example of a comment
that takes up more than one line in a program in a different format */

Figure 9-6 Examples of the use of comments.

ARITHMETIC OPERATORS

All of the standard arithmetic operators are available in ST programming. Study the
examples shown below. In the first line the tag named Temp is assigned a value equal to
Varl plus 20. Line 2 assigns a value to the RPM tag equal to the Speed tag divided by 60.
The third statement assigns the result of the tag named Cases multiplied by 12 to the
Total_Cans tag.

Temp := Varl + 20;
RPM := Speed/60;
Total_Cans := Cases * 12;

Figure 9-7 shows the arithmetic operators that can be used in ST programming. Math
operators are most commonly used in assignment statements.

CHAPTER 9—STRUCTURED TEXT PROGRAMMING

205

Add + DINT, REAL
Subtract - DINT, REAL
Multiply * DINT, REAL
Exponent (X to the power of Y) ** DINT, REAL
Divide / DINT, REAL
Modulo MOD DINT, REAL

Figure 9-7 Arithmetic operators.

The programmer must be very careful to use correct number types when perform-
ing math operations. Integer math will not provide a decimal result. Study the example
below. The tag Answer is a DINT type. Because it is an integer type, integer math will be
done. You might expect the answer to be 2.5, but the answer would be 2. You would need
to use a REAL type to get a decimal result. If the Answer tag is created as a REAL type,

the answer would be 2.5.

Answer := 5/2;

Study the example below. You might expect the answer to be 2, but the answer would be 3.
You must be careful when using integer math. If you want a decimal number as a result use

REAL-type tags.
Answer := 5.1/2;

Modulo Instruction

The modulo instruction is a very interesting operator. It can be used to find the remainder
of a division. The result of a modulo operation is the integer remainder of the division.

Answer := 5 MOD 2; /Answer = 1
Answer := 7 MOD 3; //Answer = 1
Answer := 17 MOD 3; //Answer = 2
Answer := 13 MOD 5; //Answer = 3

ARITHMETIC FUNCTIONS

(5 MOD 2 = 2 with a remainder of 1)

(7 MOD 3 = 2 with a remainder of 1)
(17 MOD 3 = 5 with a remainder of 2)
(13 MOD 5 = 2 with a remainder of 3)

There are also many arithmetic functions available to the programmer. Figure 9-8 shows
which functions are available. Note that the chart in Figure 9-8 also shows the optimal
data type to use for each function. The example below shows the use of the square root
function. In this example, the function would calculate the square root of 515 and assign

206 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

the result to the tag named Val. Note that a tag (variable) could have been used in place
of the constant 515.

Val := SQRT(515);

Absolute value ABS(numeric expression) DINT, REAL
Arc cosine ACOS(numeric expression) REAL
Arc sine ASIN(numeric expression) REAL
Arc tangent ATAN(numeric expression) REAL
Cosine COS(numeric expression) REAL
Radians to degrees DEG(numeric expression) DINT, REAL
Natural log LN(numeric expression) REAL
Log base 10 LOG(numeric expression) REAL
Degrees to radians RAD(numeric expression) DINT, REAL
Sine SIN(numeric expression) REAL
Square root SQRT(numeric expression) DINT, REAL
Tangent TAN(numeric expression) REAL
Truncate TRUNC(numeric expression) DINT, REAL

Figure 9-8 Arithmetic functions.

RELATIONAL OPERATORS

Relational operators are used to compare two values or strings and provide a true or false
result. The result of a relational operation is a BOOL value. If the result of an operation is
true, the result will be a 1. If the result of a relational operation is false, the result will be 0.
These are used extensively for decision making. Figure 9-9 shows a table of relational
operators.

Comparison Type Operator Optimal Data Type
Equal = DINT, REAL, string
Less than < DINT, REAL, string
Less than or equal <= DINT, REAL, string
Greater than > DINT, REAL, string
Greater than or equal >= DINT, REAL, string
Not equal <> DINT, REAL, string

Figure 9-9 Relational operators.

CHAPTER 9—STRUCTURED TEXT PROGRAMMING 207

Relational operators can be used to make decisions. For example, an IF statement
can make use of relational operators.

IF TEMP > 200 THEN

In this example the value of TEMP is evaluated to see if it is larger than 200; if it is, this
evaluates to a value of 1 (true). If TEMP is less than 200, it would have a value of 0 and be
false. The THEN would only be executed if the value of the operation is a 1 (true).

The value of a relational operation can also be assigned to a tag. In the statement
below, if TEMP is greater than or equal to 200, the value of 1 will be assigned to the
tag called STAT. If TEMP is less than 200, the value of 0 will be assigned to the tag
named STAT.

STAT := (TEMP >= 200);

Relational operators can also be used to evaluate strings of characters or characters in
strings. In the example below, the = relational operator is used to evaluate whether
String_1 is equal to the second string (Password). If they are the same, the result will be a
1 (true). If the strings are not equal, the result will evaluate to a 0 (false).

IF String 1 = Password THEN

The example below would evaluate the first character in a string called String_1 to see
if it is equal to 65. The letter A in ASCII is equal to 65. The String_1.DATA[] repre-
sents an array of characters. The 0 in square brackets represents the character we want to
evaluate.

IF String_1.DATA[O] = 65 THEN

LOGICAL OPERATORS

Logical operators can also be used to check to see if multiple conditions are true. Figure 9-10
shows a table of logical operators.

Logical AND &, AND BOOL
Logical OR OR BOOL
Logical exclusive OR XOR BOOL
Logical complement NOT BOOL

Figure 9-10 Logical operators.

In the example below, Sensor_1 is evaluated. If the sensor is on, it would evaluate to
a 1 (true) and the THEN would be executed.

IF Sensor_1 THEN

208

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

In the example below Sensor_1 is evaluated. In this case a NOT was used. So, if the
Sensor_1 is a 0 (false), the THEN would be executed.

IF NOT Sensor_1 THEN

In the next example, both must evaluate to true for the whole statement to be evaluated
as true. Note that the & operator was used for the AND logical operator. AND or & can
be used.

IF Sensor_1 & (TEMP < 150) THEN

In the next example the OR logical operator was used. In this case if either Sensor_1 OR
Sensor_2 are true, the statement will evaluate to a 1 and the THEN will be executed.

IF Sensor_1 OR Sensor_2 THEN

An Exclusive-OR (XOR) is used in the next example. In this example only one of the two
sensors can be true for the statement to be evaluated to true.

IF Sensor_1 XOR Sensor_2 THEN

In the next example, the result (1 or 0) of the logical operation will be assigned to the tag
called STATUS. If Sensor_1 and Sensor_2 are both true, the tag STATUS will be assigned
avalue of 1.

STATUS := Sensor_1 & Sensor_2

PRECEDENCE

The table in Figure 9-11 shows the order in which math statements will be evaluated.
This is very important. The wrong answer will be obtained if precedence is not care-
fully considered. Consider the example below. Normally math statements are evaluated
from left to right if precedence is equal. In the example below precedence is not equal.
Many people would say the answer is 21. They might add the 5 and the 2 (7) and then
multiply by 3, getting a result of 21. The correct answer is 11. The multiplication has
a higher precedence than the addition. You must multiply 2 * 3 (6) and then add the
result to 5 (11).

Answer :=5 + 2 * 3;

Another method to assure the proper order of calculation is to use parentheses.
In the example below it was desired to do the addition first. It will not be done first
because the multiplication operator has a higher precedence that the addition operator.

Answer := Varl + 17 * Temp;

It could be rewritten as shown below. In this example the parentheses assure that the ad-
dition will be done first. Parentheses have the highest precedence.

Answer := (Varl + 17) * Temp;

CHAPTER 9—STRUCTURED TEXT PROGRAMMING 209

Lo oo

1 ()

Function ()

*%

— (negate)
NOT
*,/, MOD

+, — (subtract)

<, <=,>,>=

Ol |IN|oojla|(h~|lwWw|N

= <>
&, AND
XOR

12 OR

—_
o

-
—_

Figure 9-11 Table showing the order of precedence for arithmetic operators.

CONSTRUCTS

The definition of construct is to form by assembling or combining parts; to build. The
table in Figure 9-12 shows the constructs that are available in structured text. A construct
can also be thought of as a statement.

S T

IF THEN If specific conditions are true
FOR DO A specific number of times
WHILE DO As long as a condition is true
REPEAT UNTIL Until a condition is true
CASE OF On the basis of a number

Figure 9-12 Constructs that can be used in ST.

An IF statement can be used to make a decision and then execute logic on the basis
of the decision. The IF is followed by a test statement. The test statement is a Boolean
expression that is evaluated to be true (1) or false (0). In the example below if the BOOL
expression is true, all statements between the THEN and the END_IF will be executed.
If the BOOL expression is false, processing would continue after the END_IF.

210 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

IF BOOL_expression THEN
Motor_1 :=1;
Temp := 150;
Additional logic
END_IF
An ELSE may also be used. In the example shown below, if the tag Motor_On is
true, the tag Red_Light will be set to 1. If Motor_On is false, the tag Green_Light will be
set to 1. Note that semicolons are very important. There is no semicolon after the THEN
or the ELSE, but every other line is terminated with a semicolon.
If Motor_On THEN
Red_Light := 1;
ELSE
Green_Light := 1;
END_IF;

ELSE IF (ELSIF) Statements

The example below shows the use of an ELSIF statement. Note the spelling of the
ELSIF. In this example if the first IF is false, the ELSIF is evaluated. If Sensor_3 is
true, Alarm will be assigned the value 1. Note also that you must have an END_IF

statement.
IF Sensor_1 & Sensor_2 THEN
Pump := 1;
Heat_Coil := 0;
ELSIF Sensor_3 THEN
Alarm : = 1;
END_IF;

The example below adds a few new twists. An IF, an ELSIF, and an ELSE are
used. In this example if the IF is false and the ELSIF is false, the ELSE will be exe-
cuted and the Alarm_Light tag will be assigned the value 1. Note in this example more
than one statement was put on a line. Each was separated by a semicolon. While this
is permissible, it should not be used to excess. You should be careful that it does not
make your program more difficult to understand. Note also that the statements were
indented to make the program easier to understand. Finally note where semicolons
are and are not used.

CHAPTER 9—STRUCTURED TEXT PROGRAMMING 211

IF Temp > = 100 & Temp < 200 THEN

Pump := 1; Flow := 45; Green_Light := 1; Alarm_Light := 0;
ELSIF Temp < 100 & Temp > 50 THEN

Pump := 0; Flow := 20; Green_Light := 0; Alarm_Light := 0;
ELSE

Alarm_Light := 1; Pump := 0; Flow := 0; Green_Light := 0;
END_IF;

FOR DO Statements

A FOR DO loop is used when we know how many times a loop should be executed. For
example, if we needed to fill an array of ten integers with a number, we could use a FOR
DO loop that would execute ten times. In the example below a tag named Temp was
created and it was configured to be an array of ten tags named Temp (Temp[0] through
Temp[9]). The short loop below will fill the array of ten tags (Temp[0] through Temp [9])
with the number 99.

FORX:= 0t09by1DO
Temp[X] := 99;

END_FOR;

In the next example the loop was incremented by 6 each time through. X in the loop
is assigned a value of 0 the first time through the loop. The next time through the loop it
is assigned a value of 6, then 12, then 18, then 24. The next time it would be 30, but 30 is
larger than 24 so the loop would not execute again.

FORX:=0to 24by6DO

Additional ST Statements;
Additional ST Statements;

END_FOR;

Note that when a loop is executed, the controller does not execute any other state-
ment in the routine outside of the loop until the loop is completed. If the time it takes to
complete a loop is greater than the watchdog timer for the task (default time is 500 ms),

a major fault will occur. If this becomes a problem try a different type of construct such
as an IF THEN.

WHILE DO Statement

A WHILE DO construct is used when you would like something to happen while a con-
dition is true. In the following example we would like the loop to execute WHILE two
things are true: the tag CNT is less than 50 AND the tag TEMP is less than 200. If CNT
becomes larger than 49 or Temp becomes greater than 199, the loop will not run. Note
that integer numbers are used.

212 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

WHILE ((CNT < 50) & (Temp < 200)) DO
CNT := CNT + 3;
END_WHILE;

Remember: when a loop is executed, the controller does not execute any other state-
ment in the routine (outside of the loop) until the loop is completed. If the time it takes to
complete a loop is greater than the watchdog timer for the task, a major fault will occur. If
this becomes a problem, try a different type of construct such as an IF THEN. Note that
with the WHILE loop, the test is at the beginning of the loop. If the test is false, the loop
will not even execute once.

REPEAT UNTIL Statement

The REPEAT UNTIL statement is used when we have something we want to do
UNTIL certain conditions are true. In this example the REPEAT will execute UNTIL
one of two conditions are true (note the use of the OR). In this example 2 is added to the
value of the tag CNT every time the REPEAT is executed. The REPEAT will end when
CNT is greater than 34 OR Temp is greater than 92. Note where semicolons are and are
not used.

REPEAT

CNT := CNT +2;

UNTIL ((CNT > 34) OR (Temp > 92))
END_REPEAT:

Note that a REPEAT loop will execute at least once, because the test is at the end of
the loop.

CASE OF Statement

The CASE OF construct is very useful. It can be used to perform different portions of
the program depending on a value. For example, we might produce six different products
on one machine. We could have the operator enter a number between 1 and 6 for the
product that needs to be made. The CASE statement would then run the section of code
to produce that product.

The value of the CASE variable (tag) determines which section of the program is
executed. In the example below, the value of tag Var_1 is used to decide which part of the
logic to execute. This example shows several ways in which more than one number can be
used to select a section of code.

If Var_1 is equal to 1, Temp_1 will be assigned a value of 85 and Pump_1 will be
turned on.

If the value of Var_1 is 2, Temp_1 will be assigned a value of 105 and Pump_1 will be
turned on.

If Var_1 is equal to 3 or 4, Temp_1 will be assigned a value of 110 and Pump_1 will
be turned on. Note the use of a comma. When a comma is used between values, each is

CHAPTER 9—STRUCTURED TEXT PROGRAMMING 213

valid. For example 1, 4, 7, or 9 could be used. In that case if Var_1 were equal to a 1 or 4
or 7 or 9, that portion of the program would be executed.

If the value of Var_1is 5, 6, 7, or 8, Temp_1 will be assigned a value of 115 and
Pump_1 will be turned on. Note the use of the periods between the 5 and the 8. That
means that any numbers between the two specified numbers are also valid. In this case a
5, 6, 7, or 8 would cause that portion of the program to be executed.

In the next portion of the code, the comma and the period declarations have both
been used. In this case, if Var_lisa 9, 11, 12, 13, 14, or 15, this portion of code will be
executed.

Note the use of the ELSE at the end. If Var_1 has a value that is different from any of
the cases specified, the ELSE portion of code will be run.

CASE VAR_1 OF

1: Temp_1 := 85;
Pump_1:= 1;
2: Temp_1 := 105;
Pump_1:= 1;
3.4: Temp_1 := 110;
Pump_1:= 1;
5.8: Temp_1 := 115;
Pump_1:= 1;
9,11..15: Temp_1 := 120;
Pump_1:= 1;
ELSE
Alarm := 1;
Additional logic;
END_CASE;

TIMERS

Other traditional programming instructions can be used in ST. For example, some types of
timers, like a retentive (TONR) time, can be used. To check which instructions are available
and to see an example of their use, you can use the instruction help available in RSLogix
5000. Look up a particular instruction, and it will explain which languages it can be used
in and will also give examples of the use of the instruction in the language. A TONR timer
was created and given a tag name of Stop_light_Timer. Note that the tag type must be a
FBD Timer type for ST. Figure 9-13 shows the tag and tag members for the timer.

214 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

RSL ogix S000 - Structured Text Stop Lig
A Fle [Vs Seardh Loge Commumcations Took Windos Help - 8 X
RS & |we o] =] &l v
Oifne i T : Pats [A8_ETH1VI04 109 2Bachclurw'd
o Farces b, :C(L 2
BAT .
Mo Edn é B v _I
L sl 13 . .I‘i\ o4 e
Scoge [MarProge] Sngw [Show Al vl Sor [Teghame <
T ag Mo & | Ve ® | Force M ® | Snyle 1 (=
4 Gosod] fons) TRER
- Stop_lgpt_ T E radieies 1 Deoms BOOL
 Suop_igpe_Times Temes rate 0 Decrs BOOL
+ Sacp_lght_ Ve PRE o |Docissl DINT
- Saop_bght_T e Revet 0 Decma BOOL
 Shop_bght_Times £ natieOut ol [Decmat BOOL
Swop_ight_Tmes ACT 0 Decrws DINT
- Stop_bgpt_Temee EN 0 Deoms BOOL
-~ Stop_light_Timee TT 0 Decrd BOOL [
-~ Saop_ight_Temee DN 0 Decral BOOL [
Stop_ight_Tmes Status | 1640000_0000 Hew DT |
%qr—_n 0 Decmsl BOOL
|| Sko kM _TemPreseter o [Decrndl |BOOL .-
IE[\“- Vags fEaiTags /7 e | _.J—I
s e sarved

Figure 9-13 Timer tag members created when you create a timer.

The next example shows how a timer can be used in ST programming. Study the
example. Note the use of the preset ((PRE), accumulated time (.LACC), and the timer
enable (.TimerEnable). The first three lines are used to call the timer, set a PRE value,
and enable the timer (start the timer timing). The next portion of code is IF statements
that turn a green light on if the timer’s ACC value is greater than 0 and less than 10000.
The last IF statement resets the timer if the accumulated time has reached 30000 ms by
making the timer enable 0 (false).

TONR(Stop_light_Timer);

Stop_light_Timer.PRE := 30000;

Stop_light_Timer. TimerEnable := 1;

IF (Stop_light_Timer.ACC > 0 & Stop_light_Timer. ACC< 10000) THEN

Green_1:=1;

ELSE

Green_1 := 0;

CHAPTER 9—STRUCTURED TEXT PROGRAMMING

END_IF;
IF Stop_light_Timer.ACC = 30000 THEN

Stop_light_Timer.TimerEnable := 0;
END_IF;

Figure 9-14 shows what this program would look like in RSLogix 5000. Note also the
Watch list at the bottom of the screen. This enables the programmer to watch the values

of tags during run mode.

mmmmwmtmmm

| 8||Q) & x|vj@| o)

—] Anln

NoFoces b, :c«-a::
Mo Edits a.w"‘;

jLJ| piby =

=1

lalg) =] 513 -

RemAun [M AunMode . . Pa [A8_ETH1\10.4 165 28 achlarw'd

= lar[v]se] V|5 wiw] ¥ wisd _ll

Stop_light Timer.PRE := 30000,

TONR(Suvop_lighe _Timer),
Stop_light _Tiser.TiserEnable := 1;

Creen_1 1= 1;

BLSE Crean_L 1= 0;

o _ir;

I7 Step_lighe Timer.ACC = J0000 THEN
Srop lighe Timer. TimerEnable = 0
no_ty;

I7 (uop_light Timer.ACC » 0 & Suep_lighe _Timer.

ACC« 10000) THE

L]\ Structured Test S 4 Marfostre ¢ |

2 Wakch Lt TagName &]Scope ™
Guen 1 (Conecher
Ouch Walch -
o My
Siaveir LS
Jght_Tim
3 |0 5 Trors X Sowon Tewds Awstet] ¢ | |
ooy Ln 9999, Col 9999 OWR

Figure 9-14 ST program example.

216 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

QUESTIONS

1. Write an assignment statement to:
Assign the value of 5 to a tag named Count.
Assign the value of the tag named T5 to a tag named Value.
Multiply the value of a tag named count by a tag named Number and assign the
result to a tag named Count.

2. Write one comment for each of the following. Make sure you use the correct format
for a comment and make sure you explain the line. Use more than one format type.

Temp := An_In_1/994.3;
Varl :=T7;
Total := ((5 + 8)/7) + 2;
3. Write ST for the following:
Add 20 to a tag named TEMP and assign the result to Curr_Temp.
Assign the value of a tag named Total to a tag named Amount.
Multiply two tags and assign the result to a new tag.
Motor_1 is a tag for digital output. Turn it on with an assignment statement.
4. What is the difference between DINT-type arithmetic and REAL-type arithmetic?
5. What is the result of the following statements?
Answer := 4/2 /* Answer tag is a DINT */
Answer := 5/2 /* Answer tag is a DINT */
Answer := 5/2 /* Answer tag is a REAL */
Answer := 5 MOD 2 /* Answer tag is a DINT */
6. Write a line of ST for each of the following:
Find the square root of a number and assign the value to a tag.
Find the tangent of a tag and assign it to another tag.
Square a tag and assign the result to another tag.
7. Write an IF statement for each of the following:
Temp is greater than 250.
Varl is greater than or equal to Var2.
Var2 is less than Varl multiplied by 6.3.
If Sensor_1 is on, turn on Light_1.
If Temp > 95, turn heater_1 off.

If Temp is greater than 100 and Sensor_1 is true, turn Done_Light ON; otherwise
turn Alarm ON.

8. When should a FOR DO loop be used?

9. Write a FOR DO loop to fill an array of temperatures with zeros.
10. Write a WHILE DO loop to turn Alarm_1 on until Temp is less than 150.
11. When should a REPEAT UNTIL loop be used?

CHAPTER 9—STRUCTURED TEXT PROGRAMMING 217

12. Thoroughly explain the following ST:
CASE Choice OF

1: Varl := 65;
Out_1:=1;
2,3: Varl := 85;
Out_2:=1;
4: Varl := 95;
Out_3:=1;
5,7...10: Varl := 115;
Out_4:=1;
ELSE
Statement;
Statement;
END_CASE;

13. Write ST to use a 60-second timer. An output should be on for the first half of the
cycle and off for the second half of the cycle. It should continuously repeat.

14. Where can you find which CLX instructions are available for ST programming?
15. Write ST code for the following application:

Develop a stoplight application. You must program both sets of lights. Make the overall
cycle time 30 seconds.

Tagname Description
Green_1 Green — East/West
Yellow 1 Yellow — East/West
Red_1 Red — East/West
Green_2 Green — North/South
Yellow_2 Yellow — North/South
Red_2 Red — North/South

This page intentionally left blank

CHAPTER

50

Sequential Function Chart (SFC)
Programming

OBJECTIVES

On completion of this chapter, the reader will be able to:

= Explain what sequential function chart programming is.

» Explain types of applications that could benefit by the use of sequential function
chart programming.

= Develop sequential function chart programs.

INTRODUCTION

Sequential function chart (SFC) programming is a very useful and friendly language. SFC
is very useful for helping organize an application. This chapter will start with an overview
of what a SFC program is and then explain each of the components of an SFC program in
detail. It should be noted that the only way you will learn to program is to write programs.
Utilize the questions at the end of the chapter to make sure you understand the concepts
and then practice writing and testing your logic.

SFC PROGRAMMING

SFC programming is a graphically oriented programming language. SFC program looks like
a flow diagram or a decision tree. If an application is sequential in nature, SFC program-
ming is a natural choice. In SFC programming an application is broken into logical steps.
For example, when making a pot of coffee, there are some definite steps that are followed.

220 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Measure and add coffee.

Measure and add water.

Turn the pot on.

Remove completed coffee and turn the pot off.
5. Remove the filter and grounds and clean the pot.

Ll e

SFC programming could be used to program this system. The coffee-making process
could be broken into five steps. Figure 10-1 shows an example of what it might look like.
Step 1 has an action that the operator must perform. The action is to measure and add
coffee. There is a decision at the end of the step. If coffee has been added, the process
continues at step 2; if not, processing remains in step 1. Step 2 has one action associated
with it (measure and add water). At the end of step 2 is another decision. Step 3 also has
an action and a decision. Steps 4 and 5 have two actions associated with each. Note that
every step has a decision point after it that determines when processing for the step is
done and the next step should be started.

Steps Actions in Steps

bl Step 1 | Measure and Add Coffee

No - —~—

e —

—=___Coffee Added ? _—

Yes

m Measure and Add Water

Yes

No F

—Qnad on?
=

i Yes
Remove Completed Coffee
Turn Coffee Pot Off

No //Y\x_
[" potor? T
""-..____‘_‘_ -‘-‘1‘-_“_ I—'_'_.’—,/

v Yes .
| Step 5] Remove Filter and Grounds
P Clean Pot

o —

Yes e R
— —___Make Another ?/‘_,..—./)'

No
Stop

Figure 10-1 Coffee process broken into logical steps.

CHAPTER 10—SEQUENTIAL FUNCTION CHART (SFC) PROGRAMMING 221

An SFC program consists of three main components: steps, actions, and transitions.
Carefully study the typical SFC program in Figure 10-2. In this example, the first two
step names were left with their default name: Step_000 and Step_001. The remaining
three steps were given names that reflect the purpose of the steps: Normalize, Assemble,
and Paint. There are transitions between steps (Tran_000, Tran_001, and Tran_002).

Study the transition between Step_000 and Step_001. A transition is a condition to
determine when processing moves from one step to the next by evaluating to true or
false. If the transition is true, processing will move to the next step. The first two steps
are linear. In other words the first one is processed, then the second, and then the next.
The next three steps are concurrent steps. All three are being processed at once. Note
the actions that are attached to steps (Action_000, Action_001, and Action_002). Actions
can use ST to make decisions and control I/O. Note that actions can be hidden to make
a program less cluttered. Note also that each action has a qualifier that controls when an
action starts and stops. These will be covered later in this chapter.

Steps represent a major function of an application.
/ Steps contain actions that occur during this portion of an application.

»
(m]
: ;.“t" sl ‘”"‘“"‘l—“m 4 Actions are functions that steps perform.
anveyor = H
Step_00D
z Transitions are True or False Conditions
A that allow the SFC to go to the next step.
...] | Tran_oo0 - :
— :n' Qualifiers determine when an
ep_000 . D8 £ Jensorl 5
- action starts and stops.
_ _Ln .| Potion_D01
S‘ttp_ﬂm eater := 1
PO ...| Action_002
fleater := 0
Tran_001 Simultaneous Branch are used to

execute more than one step at a time.

Part_Jensor

A
Actions can be shown or hidden.
]] i
Tl + ad [+ o N _...| Action_005
MIR(Paint 0] ;
Nommalize Assemble Paint

Tran_002
JIR(Part_Dane ,0)
v

= JSR instructions can be used to call another program.

Figure 10-2 Simple SFC program.

222

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

SAMPLE APPLICATION

For this application imagine a system that is used to heat parts to a specified
temperature.

» The operator puts a part in the fixture and pushes a start switch.

* The heating coil is turned on for 50 seconds.

= When 50 seconds is done, the operator removes the completed part, places an-
other part in the fixture, and starts a new cycle.

Figure 10-3 shows two examples of simple SFC programs that could control the
heating application. Step 1 is named Wait_For_Start_Cycle. The processor will stay in
this step until the transition after the step is true. In this example the transition condition
is the state of the start switch (Start_Switch). When the operator pushes the start switch,
the transition is true and the processor will execute the next step (Heat_Cycle).

Heat_Cycle is a timed step. Parameters were set in the step to make it 50-second step.
An action was added to the step. The action turns on the heater output (Heat_Output).
The heater output was programmed to be nonretentive so it will shut off when the proces-
sor leaves this step. When the step has reached 50 seconds, the Heat_Cycle.DN bit will
be true. Note that this bit was used for the next transition. In the example on the left the
transition was then wired to the first step, so the process can be executed again when the
start switch is pushed by the operator. The example on the right is almost the same except
it will only run once. A stop was programmed at the end of the sequence.

Steps are the logical groupings that we break our application into; for example, the
first step in our coffee-making process is measuring and adding coffee. The step is the or-
ganizational unit. Steps can perform timing and counting functions and can have actions
associated with them.

man_Fee a8 dapay
Fras (e}
-
ars Wi !
=
Eal
L hcBen 002
'
’tea' . et =] 1)
ltc,"._ yife |

CHAPTER 10—SEQUENTIAL FUNCTION CHART (SFC) PROGRAMMING

223

-|Il-¢.‘!__l od_TLpa_figay
Tiga OO0
Ll
LT L. Vit Th
=
n
In Acien_002
|)
bz s = pAUR =] 1]
Medt (ytie |
n
Fean QO

. S8sp OOD

Figure 10-3 Simple heating cycle SFC programs. The one on the top will repeat. The one on

the bottom will run once and stop.

Actions can be thought of as the inputs and outputs we use to accomplish the tasks in
a step. Actions in a step are repeated until the transition to the next step becomes true.

Transitions are BOOL statements that must be true to move to the next step.

ORGANIZING THE EXECUTION OF THE STEPS

Linear Sequence

A linear sequence is used to execute one or more steps in a linear fashion. Figure 10-4

shows a bottling operation that is linear.

| Clean Bottles |
| Fill Bottes |
| Cap Blottles |
| Case[Pack |

Figure 10-4 A linear step bottling process.

224 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Figure 10-5 shows a linear SFC. One step is executed continuously until the transi-
tion becomes true, then the next step in the sequence is executed continuously until the
next transition is true, and so on.

tep OO
w
Tean Ol
-
T &p on
o
bt
$tep Q01
Fras k]
]
rars eNnsoy
o
m
ey CUNIS

L s« D

Figure 10-5 Linear steps in an SFC.

Wiring (Connecting) Steps

Wires are used to connect steps. Wiring is done by dropping elements on the attach-
ment tabs or by clicking on the tab of one element and dragging it to the tab of the
element you want to connect to. Tabs turn green when you can connect. You can con-
nect a step to a previous point in an SFC (see Figure 10-6). This enables you to loop
back to repeat steps or return to the beginning of an SFC and start over.

CHAPTER 10—SEQUENTIAL FUNCTION CHART (SFC) PROGRAMMING 225

.

$oep 000

Tras 000

St ep UK s

Figure 10-6 Looping back in an SFC.

Concurrent (Simultaneous) Processing
If there were more than one person making coffee, they could do some steps at the same
time. One person could be putting a filter and coffee into the coffee machine while an-
other could be measuring water and pouring it into the pot. Figure 10-7 shows an ex-
ample of concurrent coffee processing.

[Make Coffee ‘
[

Measure and Add Coffee] ‘ Measure and Add Water
[[
l
| Turn Pot On]
|

Remove Completed Coffee
Turn Coffee Pot Off

Figure 10-7 Concurrent processing.

226 PROGRAMMING CONTROLLOGIX® PROG

RAMMABLE AUTOMATION CONTROLLERS

A simultaneous branch is used t

o0 execute two or more steps or groups of steps at the

same time. Figure 10-8 shows an example of a simultaneous branch. All paths must finish

before continuing on in the SFC pr
neous branch and a single transition

ogram. A single transition is used to enter a simulta-
is used to end a branch. The SFC program will check

the end transition, after the last step in each path has executed at least once. If the transi-

tion is false, the last step is repeated

Figure 10-8 A simultaneous branch.
of the branch.

Selection Branching

& 000
= ag®
ey OO
-
v Tiaa 002
=
i4.08 % &g .00
B
f2ep 017
¥
-
Tegs)y
*e3 DN AND Step 017.0W

Note the parallel horizontal lines at the top and bottom

A selection branch is used to choose between paths of steps depending on logic con-
ditions. Figure 10-9 shows a selection branch SFC. Note that each path begins with a
transition. The SFC program will check the transitions that start each path from left to

CHAPTER 10—SEQUENTIAL FUNCTION CHART (SFC) PROGRAMMING 227

STEPS

right. It will take the first path that is true. If no transitions are true, the previous step will
be repeated. The software will let you change the order in which transitions are checked.
It is acceptable for a path to have no steps and only a transition. This could be used to skip
an entire selection branch under certain conditions. In Figure 10-9 if the first three tran-
sitions are false and Tran_015 is true, processing would go through the selection branch
to the Pack step after the branch.

$ex Oilne
L)

Tian OF Teas 011 Tas 012 Tega 013

- - - -
erns i ensor ensor Fass Thax
8 i B .
hize=tie ey heie=131y P gt

Tiaa OD4 Tean_00% Tean_008
L] L] -

Assenble DN Veld Asseadly.DB Faine .00

Figure 10-9 A selection branch SFC. Note the single horizontal lines at the beginning and
end of the selection branch.

At this point you should understand the basics of what an SFC is. You should under-
stand what steps, actions, and transitions are used for. Next, steps, actions, and transitions
will be examined in more detail.

Steps have a lot of functionality built into them. To identify steps in a process, it may be
helpful to look for physical changes in the process. A physical change might be something
such as a pressure that is reached, a temperature that is reached, a new part that is now

228

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

in position, or a choice of which product or recipe to use, and so on. This physical change
can represent the end of a step. The step will consist of the actions that occur before that
change. Be careful not to have too many steps or too few steps. Too many or too few may
make the program confusing. Make steps meaningful.

When a step is created, several tag members are automatically created that are as-
sociated with the step’s tag name. Figure 10-10 shows an example of members that were
automatically created for a step tag named Step_000.

+ Step_000 Stama

~Swp_000X

~ Shep_O00FS

~ Shep_000SA

~ Shep_000LS

 Step_000ON

-~ Step_000.OV

- Shap_000 Al

- Step_ 000 Al cor

 Step_000 AlwmHigh
Shep_000 Reset

+ Step_000 PRE

+ Step_000.T

+ Step_000 TMax

+ Step_000 Count

+ Step_000 Limitgh

Figure 10-10 Step_000 tag members.

Let’s consider a few of the available tag members.

Step_000.DN would be the done bit. If we set a PRE value in milliseconds for the
step, the DN bit for the step will be true when the step’s time gets to the PRE value
which is found in Step_000.T.

Step_000.AlarmHigh is a bit that would be set to true when the step’s accumulated
time (Step_000.T) gets to Step_000.LimitHigh value. Any of the tag members can be
used in logic.

You can change the name of the step by right clicking on the step and choosing the
Rename option. When you rename a step, all of the step tag members are renamed to the
new name. One of the tags is a DN bit.

CHAPTER 10—SEQUENTIAL FUNCTION CHART (SFC) PROGRAMMING 229

Figure 10-11 is a table that shows all of a step’s members and their use. These step
members (tags) can all be used in logic. To use tag members, the name of the step is fol-

lowed by a period (.) and the member name.

Tag Member

Data Type

Function

Length of time a step
has been active

DINT

When the step becomes active, the T value
is reset and then begins to increment in
milliseconds.

Length of the timer
preset

PRE

DINT

Enter the length of time you want for the timer
PRE value.

Timer DN Bit

DN

BOOL

The DN bit is set when the timer reaches the
PRE value. The DN bit will stay on until the step
becomes active again.

If a step did not
execute long enough

LimitLow

DINT

Enter a value in milliseconds. If the step becomes
inactive before the timer (T) reaches the LimitLow
value, the AlarmLow bit turns on.

The AlarmLow will stay on until you reset it. To
use the alarm function, make sure the alarm
enable (AlarmEn) is checked.

AlarmEn

BOOL

To use the alarm bits, you must turn (check) on
the alarm enable (AlarmEn) bit in the step.

AlarmLow

BOOL

If the step becomes inactive before the timer (T)
has reached the LimitLow value, the AlarmLow
bit will be turned on. The bit will stay on until you
reset it. To use this alarm function, you must turn
on (check) the alarm enable (AlarmEn) bit in the
step.

If a step is executing
too long

LimitHigh

DINT

Enter a value in milliseconds. If the step becomes
inactive before the timer (T) reaches the LimitHigh
value, the AlarmHigh bit turns on.

The AlarmHigh will stay on until you reset it.

To use the alarm function, make sure the alarm
enable (AlarmEn) is checked.

AlarmEn

BOOL

To use the alarm bits, you must turn (check) on
the alarm enable (AlarmEn) bit in the step.

AlarmHigh

BOOL

If the step becomes inactive before the timer (T)
has reached the LimitHigh value, the AlarmHigh
bit will be turned on. The bit will stay on until you
reset it. To use this alarm function, you must turn
on (check) the alarm enable (AlarmEn) bit in the
step.

Do something while
the step is active
(including the first and
last scan)

The X bit is set the entire time a step is executing.
It is recommended to use an action with an N
(nonstored) qualifier to do this.

Continued

230 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

times a step has been
active

Do something once FS BOOL The FS bit is on during the first scan of a step. It

when the scan is recommended to use an action with a P1 Pulse

becomes active (rising edge) to do this.

Do something while SA BOOL The SA bit is on while a step is executing except

the step is active for the first and last scan.

Do something one LS BOOL The last scan (LS) bit is on during the last scan of

time on the last scan a step. This bit should only be used if you do the

of the step following: In the controller’s properties box, SFC
execution tab, set the Last Scan of Active Step to
Don’t Scan or Programmatic Reset.

Determine the target Reset BOOL An SFC Reset (SFR) instruction resets the SFC to

of an SFC Reset (SFR) a step or stop that the instruction specifies. The

instruction Reset bit indicates to which step or stop the SFC
will go to begin executing again. Once the SFC
executes, the Reset bit is cleared.

The maximum time TMax DINT This is normally used for diagnostics. The

that a step was active controller will clear this value only when you

during any execution select the Restart Position of Restart at initial step
and the controller changes modes or experiences
a power cycle.

Determine if the timer | OV BOOL This is used for diagnostics.

(T) value rolls over to

a negative value

Find out how many Count DINT This is the number of times a step has been

active, not the number of scans. The count is
incremented each time a step becomes active.
It will only be incremented after a step goes
inactive and then active again. The count only
resets if you configure the SFC to restart at
the initial step. Under this configuration it will
be reset when the controller is changed from
program to run mode.

Figure 10-11

Using the Preset Time of a Step

Table showing the tag members for a step.

The PRE value of a step can be used to control how long a step executes. Figure 10-12
shows the properties screen for a timed step. In this example the heating step (Step_000)
needs to be run for 40 seconds (40000 ms). Note that the PRE value for a step is entered
into the Preset member. Figure 10-13 shows the step and transition. The DN bit of the
step is used as the transition to quit executing Step_000 and move to the next step. Note
that the Step_000 DN bit was used (Step_000.DN) in the transition. When the step’s ac-
cumulated time equals 40000, the Step_000.DN bit will be true, making the transition
true, and the program will move to the next step.

CHAPTER 10—SEQUENTIAL FUNCTION CHART (SFC) PROGRAMMING 231

Gonesal" | Acton Osdes| Tag |

Tyoe T Nommal
& ol

Frotet |mn E.FU-M (et I

T ﬁ 3- QDoe @ Fist Scan
o> QO Swp Acwve

Tirsetn M ﬁ 3- © Ovesk .mﬁnm

Gt [0 2] ORem

Figure 10-12 Step properties.

n
-

N | Adtiea 002
000 Iﬂ-rw- = 13
|

-l
Shep

=] | Tiaa_004
Step_000.08

o)

Figure 10-13 A timed step.

232 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Use of a Step’s Alarm Members

The next example makes use of the Step’s AlarmHigh member. The AlarmHigh member
is one bit. Study Figure 10-14. To use the alarm bits in a step you must turn on the Alarm
Enable (AlarmEn) parameter bit in the step (refer back to Figure 10-12). This is done
in the check box labeled AlarmEnable. You must also enter a value for LimitHigh. If the
step’s timer (T) has reached the LimitHigh value, the AlarmHigh bit will be turned on.
The bit will stay on until you reset it. In this example the step was supposed to be finished
successfully in less than 10 seconds (10000 ms). If it is finished, the transition on the
left of the selection branch will be true and the step named Process will be executed. If
the tasks in the step are not completed in less than 10 seconds, the step’s AlarmHigh bit
(INIT.AlarmHigh) will be set, the transition on the right will be true, and the step named
Shutdown will be executed.

Teaa 004 Tean 005
. . 3
MLt . D8 ENIT. ALlaradisah
i Ct
Ik . . It
L s B

Figure 10-14 Use of a Step’s AlarmHigh member (bit).

Turning Devices Off at the End of a Step

Devices can be turned off at the end of a step through program logic or automatically.
There are three choices for how steps are scanned. The choices are found in Control-
ler Properties under the SFC execution tab (see Figure 10-15). The three choices that
control how the last scan of an active step is handled are Automatic reset, Programmatic
reset, and Don’t scan.

CHAPTER 10—SEQUENTIAL FUNCTION CHART (SFC) PROGRAMMING 233
i Controller Properties - S1 LI X
Gewsd | SesdlPor | SymemProtocdl | User Protocol

Fle | Redndancy |
Magr Faults | MinorFauls | Date/Teme | Advanced SFC Emocunon’

Emacumon Contsol
& Ewecube cument achve 1hops onlly
" Ewacute untl FALSE manaition

Retant Pouon
o Beitat af =00 wcontly ewecubed b6

" Retart at bl thep

Last Scan of Actve Stepe
* Aubomate: retet

T Programematc et
" Dont scan

oK Cancel | Ao | Heb

Figure 10-15 Controller properties, SFC execution tab.

Automatic Reset Option

Automatic reset may be the most straightforward. If you check the Automatic reset op-
tion choice (see Figure 10-15), square brackets in assignment statements as shown in
Figure 10-16, outputs will be turned off when leaving the step. If the square brackets

were not used, the output would remain on.

Output_5 [:=] 1;

The square brackets would make this action nonretentive, and Output_5 would be
turned off when the step ends. Remember that you must choose Automatic reset in the

Controller Properties for this to work.

234 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Programmatic Reset Option

If the Programmatic reset option is chosen, you can use the last scan of a step to change
the state of devices. Figure 10-16 shows an example of Programmatic reset. Note that the
step’s LS bit is used in the IF statement. During all scans except the last scan, the output
is on. On the last scan of the step, the output would be turned off.

ed M “Gﬂ!'_(#*l
o
Hf BOT (Heazer Cycle.l Than
e e L ycie Baatox = 1;
¥ B.::
2 Heaterx = D)
T g ifJ
Taa 0K
L]
ensz L 3 -

Figure 10-16 Use of the LS bit to control a device.

Don’t Scan Option

The Don't scan is the default option for scanning. If this option is chosen, all data keep
their current value when they leave a step. The programmer must use assignment state-
ments or other instructions to change any data that need to be changed at the end of a
step. A falling edge pulse (P0) action can be used. The PO action should be the last action
in a step. Only P and PO actions are executed in the last scan if the Don’t scan option is
chosen. Figure 10-17 shows an example of the use of a PO in Action_002 to turn a device
off at the end of a step.

h .,.I&- | Actien_001

Mea® es =]

o [P0 | Ades_002

ezt es = 0}

Figure 10-17 Use of a PO action to turn an output off at the end of a step.

These have been only a few examples of what can be done with the step tag
members. Study the table of step tags and their uses in Figure 10-11 for additional
possibilities.

CHAPTER 10—SEQUENTIAL FUNCTION CHART (SFC) PROGRAMMING 235

ACTIONS

Actions are used to perform functions such as turning outputs on or off in a step. Actions
are added to steps by right clicking on a step and then choosing Add Action. Two actions
have been added to a step in Figure 10-18.

" Acton (10

Meas ex = 1)

s = ’ 0 heton 002

Figure 10-18 Actions in a step.

Action Tag Structure

Action tag members are created when you create an action. Figure 10-19 is a table that
shows the action tag members and their uses.

Check or set

this member of

the structure Type DIET S
Determine when Q BOOL The status of the Q bit depends on whether the action is a
the action is Boolean or a non-Boolean action.
active. Type of Action State of Q Bit
Non-Boolean On while the action is active, but off at

the last scan of the action

Boolean On the entire time the action is active
including the last scan of an action

Use the Q bit to determine when an action is active.

A BOOL The A bit is true the entire time an action is active.
Determine how T DINT When an action becomes active, the timer (T) value resets and
long an action then starts to count up in milliseconds. The timer will count up
has been active in until the action goes inactive, regardless of the PRE value.
milliseconds.
Use a time-based PRE DINT Enter a time limit, or delay, in the preset (PRE) member. The
qualifier such as L, action starts or stops when the timer (T) reaches the PRE
SL, D, DS, or SD. value.
Determine how Count DINT Count is not a count of the scans of the action. The count
many times is incremented each time the action becomes active. Count
an action has will increment only when the action goes inactive and then
become active. active again. The count will only reset if the SFC program is

configured to restart at the initial step. With that configuration, it
resets when the controller changes from program to run mode.

Figure 10-19 Action tag member table.

236 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

There are two types of actions, non-Boolean and Boolean.

Non-Boolean Actions

Boolean

Non-Boolean actions contain the logic for an action. They use ST to execute instruc-
tions or call a subroutine. ST can be used in actions for assignment statements, logic, or
instructions. Figure 10-20 shows an example of an assignment statement in an action.

Figure 10-20 A retentive action.

Non-Boolean actions can also be used to call other subroutines. Figure 10-21 shows
an example of a transition being used to execute a JSR. This subroutine could be an-
other language or another SFC. JSRs are also commonly used in actions to call other
subroutines.

Figure 10-21 ST to call another routine.

Actions

Boolean actions can also be used. Figure 10-22 shows how a Boolean action is config-
ured. Note the checkmark in the Action Properties screen. The Q bit for this action is
used in logic in Figure 10-23. The Q bit for this action will be true when the action is
active.

The use of the Q bit is explained in the table in Figure 10-19. Study the Q bit. If
the action is set up as Boolean, the Q bit will be true the entire time the action is active,
including the last scan. If the action is non-Boolean, the Q bit will be true while the scan
is active until the last scan. The Q bit will be set to false in the last scan. This can be very

helpful.

CHAPTER 10—SEQUENTIAL FUNCTION CHART (SFC) PROGRAMMING 237

0

pur Jes-{® W T Amenco0]

B cemia g

Action Properties - Action_000 x
Genesal | Acton Ovdes| Tagp |
Granilier [u NonSiosed ;I W Boclean
Preset mml— Ute Exgression _I
Vieae o 2w QA
Count P =2 oo
indcator Tag. | > Newlag |

Figure 10-22 A Boolean action. Note that Boolean was checked in the Action Properties
screen.

m_@o r =J5R 3
o : ; 1 Jusp To Sulbwouting 3
' Roubing Mare Pracessing_Cycie

LS ¥

Figure 10-23 A Boolean action being used to call a subroutine named Processing_Cycle.

A Boolean action contains no logic for the action. It is used to set a bit in an action’s
member. To use the actual action, other logic must monitor the bit in the action tag and
execute when the bit is set. If you use Boolean actions, you will normally have to manu-
ally reset the assignments and instructions that are associated with the action. There is
no link between the Boolean action and the logic to perform the action so the Automatic
reset option does not affect Boolean actions.

Figure 10-24 shows an example of a Boolean action. When Step_002 is active, the
Boolean Action_007 executes. When the action is active, the Q bit is true for the action.
The Q bit is true while the step is active until the last scan when it turns false. In this ex-
ample, when the step becomes active, the Q bit will be true and Heater_Output will be
set to 1. During the last scan of the actions, the Q bit becomes false and Heater_Output
is set to 0.

238

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

'S

| EE Aetion 000.0 Then
i End_if;

Ef BOT Acction 00
Neatey Outgpum
End_s%;

0.0 Then

*o.

Figure 10-24 Use of the action’s Q bit.

A step’s Q bit is used in the next example (Figure 10-25). The Q bit is always true if
the step is not in its last scan. In the last scan of a step, the Q bit is false (0).

Acsion_000 O Fibabar _Owlpul

|)= -
L,

s

Figure 10-25 Use of an action’s Q bit in a ladder diagram.

The Order of Execution for Actions

Actions are executed for a step from top to bottom. The order of the actions for a step
can be changed in the step’s properties. Figure 10-26 shows how the order of actions can
be changed. The programmer simply selects an action and moves it up or down into the
desired execution order. Figure 10-27 shows a step and its actions before and after the
order of execution was changed.

Step Properties - Step_002 X
Genesal Action Duder” | Tag |
Action E vallsaton Deder
N
ton_010 ﬂ
fon_012 o
' 4

Figure 10-26 The Step Properties setup screen with the Action Evaluation Order chosen.

CHAPTER 10—SEQUENTIAL FUNCTION CHART (SFC) PROGRAMMING 239

i
Compressor := 1;

P aiad

O LN) | Actien_O11
wpply = L
N Actea 012
pone_Indicater := 1

0

=’ L""“] Aclien_010

Compreszsor :=)
P aint

O M| Adtien 012

pone_Indicator := 1

Fﬁ] ABien_O11

upply = L

Figure 10-27 Order of execution for actions before and after the order was changed.

Using an Action to Call a Subroutine

Figure 10-28 shows the use of an action to call a subroutine named temp. Note the tag
names between the parenthesis. The name of the subroutine is temp. We will be sending
one parameter to the subroutine (Setpoint), and one will be returned from the subroutine
(Current_Temp). Figure 10-29 shows the setup screen for the JSR call. The programmer
entered Setpoint for the input parameter and Current_Temp for the return parameter.
Note that you do not have to send or return values. In this example, the JSR instruction
(action) sends the value of the tag Setpoint to the subroutine and the subroutine returns
the value of the tag Current_Temp.

0

P N | Adtien 000

Pakad §R (Temp, 1, Setpoint, Current Veup))
w

Figure 10-28 An action used to call a subroutine.

| e || Cammers_T emp
L] L]

Figure 10-29 Configuration screen for the JSR action in Figure 10-25.

240

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Qualifiers for Actions

Study the table shown in Figure 10-30. There are several action qualifiers that can be
used to control how an action executes.

= Nis anonstored action. The N action will stop when the step is deactivated.
» The P1 qualifier executes once when the step is activated.
= S is the stored qualifier. An S action will remain active until a reset action turns off

this action.

= A D qualifier causes the action to activate a specific time after a step has been acti-

vated and deactivate when a step is deactivated.
» A P qualifier will execute once when the step is deactivated.
* An R qualifier is used to reset (deactivate) a stored step.

If the Action is to And ‘ Use ‘ Type
Start when a step is Stop when the step is deactivated. N Nonstored
activated. Execute only once. P1 Pulse (Rising edge)
Stop before the step is deactivated or L Time limited
when the step is deactivated.
Stay active until a reset action turns S Stored
off this action.
Stay active until a reset action turns SL Stored and time
off this action or a specific time limited
expires, even if the step is deactivated.
Start a specific time after Stop when the step is deactivated. D Time delayed
the step !S a(ftlvat(?d and Stay active until a Reset action turns DS Delayed and stored
the step is still active off this action.
Start a specified time after | Stay active until a reset action turns SD Stored and time
the step is activated, even off this action delayed
if the step is deactivated
before this time.
Execute once when the Execute once when the step is P Pulse
step is activated. deactivated.
Start when the step is Execute only once. PO Pulse (Falling edge)
deactivated.
Turn off (reset) a stored R Reset

action.

S Stored

SL Stored and time limited
DS Delayed and stored

SD Stored and time
delayed

Figure 10-30 Table showing qualifiers for actions.

CHAPTER 10—SEQUENTIAL FUNCTION CHART (SFC) PROGRAMMING 241

TRANSITIONS

Transitions are physical conditions that must happen or change before going to the next
step (see Figure 10-31). A transition uses the state of Boolean logic (true or false) to de-
termine whether processing should move to the next step. In Figure 10-32 a tag named
Start was used for the Boolean state of the transition.

Transition State ‘ Value ‘ Result
True 1 Go to the next step.
False 0 Continue to execute the current step.

Figure 10-31 A transition table.

Figure 10-32 A transition. Note that the step will continue to execute until the transition
is true.

A transition can be a Boolean or can be a JSR instruction to call another routine.
Figure 10-33 shows some examples of Boolean transitions. The first example is just a
Boolean tag. It could be a sensor’s state, for example. If it is true (1), the transition will
be true. The second example uses an AND to see if both Boolean tags are true. Both
must be true for the transition to be true. The third example uses a Boolean operator (>)
and a Boolean tag in an expression. If the expression is evaluated as true, the transition
will be true.

Figure 10-33 Use of Boolean expressions as transitions.

242 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Figure 10-34 shows the use of a JSR instruction in an action to call a subroutine. In this
example the action in Figure 10-34 calls subroutine Heater_On. The Heater_On subroutine
is ladder logic that simply turns on an output named Heater_Output (see Figure 10-35).

In | Adien_008
]

yER(Naeater On) ;
e 3%er Tilep

Figure 10-34 Step whose action calls a subroutine named Heater_On.

Heaber Owlpul

Figure 10-35 Heater_On subroutine. When this subroutine is called, it turns on
Heater_Output.

Figures 10-36 and 10-37 show examples of the use of a JSR instruction in a transition.
The JSR instruction in Figure 10-37 is used to call the routine named ST_Decision. The
subroutine logic in the ST_Decision routine is used to control the transition state.

Figure 10-36 This transition calls a ST routine named ST_Decision.

The ST_Decision routine uses ST to decide the state of the transition. Note the use
of the End of Transition (EOT) in the last line of the routine to return the state of BOOL-
type tag to the transition. An EOT must be used at the end of a subroutine to return a 1
(true) or O (false) for the transition.

Figure 10-37 The ST_Decision routine. An EOT is used to return a value of 0 or 1 to the tran-
sition shown in Figure 10-36.

In the example shown in Figure 10-38, A JSR instruction is used to call a subrou-
tine named Part_Done. Part_Done is a ladder logic subroutine. The Part_Done pro-
gram is shown in Figure 10-39. Sensor_1, State_2, and State_3 must be true to make

CHAPTER 10—SEQUENTIAL FUNCTION CHART (SFC) PROGRAMMING 243

Boolean_Tag true. If Boolean_Tag is true, the transition will be true. Note the use of
the EOT to return the state of Boolean_Tag to the transition.

o
L]

Figure 10-38 A transition that calls subroutine Part_Done.

Senaoe 1 Stabe_1 Shale 2 Bockean_Tag
P
4 B OF Temngilior v

¥

Rabe Bt Bociean_Teg

Figure 10-39 Subroutine Part_Done. If Sensor_1 AND State_1 AND State_2 are true, the EOT
will return a true to the transition and the next step will be executed.

Keeping Outputs on During Multiple Steps

Figure 10-40 shows one method to turn a device on and keep it on for multiple steps. A
regular assignment statement could be used to turn a device on as shown in Step_1’s ac-
tion. It will remain on until an assignment statement in an action in a different step turns
it off. In this example it will be turned off by the action in Step_2.

L Sty
-
Teas_ 000
Pun_Bit
£\
i
L] Acen_000
Crsen =]
Shep_1
Tees 008
.
- 1.0
1
L] Acten 001
Ereen -
Sty _2
Tess 002
cep Z.DM
&
o
@) #ep 000

Figure 10-40 Keeping an output on for more than one step.

244 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

The example in Figure 10-41 shows the use of a simultaneous branch to keep an out-
put on during multiple steps. This method may make the logic easier to understand.

M _| Adien_0%0

o

Meater Oumpus = 13

Figure 10-41 A simultaneous branch. Note the branch on the right keeps the Heater_Output

on for the whole length of time that the simultaneous branch is active; in fact it will not turn
off at the end of the branch either.

Another method of keeping actions active for multiple steps is by using Stored(S)-
type actions. Figure 10-42 shows an example of an S-type action. An S-type action is used
to keep the action active. Note that a reset action only turns off the desired action; it does

not automatically turn off the devices in that action. You must use another action after the
reset action to turn off the device.

S

s | .| Action_006
?

Step_007

e 0o 0o —(

R
[R[...] Action_009

D—

Step_012
U

Figure 10-42 Set and reset actions.

CHAPTER 10—SEQUENTIAL FUNCTION CHART (SFC) PROGRAMMING 245

Ending an SFC Program

Once an SFC program ends the last step, it does not automatically restart at the first
step. If you would like to automatically go back to an earlier step in an SFC program, you
would wire the last transition to the top of the step you want to execute next. If you would
like to stop after the last scan and wait for a command to restart the SFC program, you
would use a stop element. Figure 10-43 shows a SFC program with a Stop element at the
end. When the SFC program reaches a stop element, the X bit of the stop element will
be set to 1. Stored actions remain active. Execution of the SFC program stops. If a stop
element is used in one path of a simultaneous branch, only that path’s SFC program will
stop scanning; the rest of the SFC program will execute.

frsa Gtag

Teaa ODD
e 3
ci
ri
In Aatien_000
i
Lreen | = 1.
Blep "
Yean 0%
=
& 1 %W
L | Actioa_001
'
i ec =
ey 2
Tean O

cep £.08

> oo
-

-

g

Figure 10-43 Use of a stop element.

246 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Restarting a SFC Progam after a Stop

If another SFC program calls the subroutine, it will be reset to the initial step and execute
if Automatic reset was chosen for the scan option. Figure 10-44 shows an example of call-
ing another SFC program as a subroutine. If the Programmatic reset option or the Don’t
scan option was chosen, to restart an SFC program after a stop, you must use a SFC reset
or logic to clear the X bit of the stop element.

- VER(Meater
Me e Slep

Figure 10-44 Use of a JSR instruction to call and execute another SFC program.

If no other SFC program calls the routine as a subroutine, use a SFC reset (SFR)
instruction to restart the SFC program at the required step or use logic to clear the X bit
of the stop element.

PROGRAMMING A SIMPLE SFC

To begin programming, right-click on MainProgram and add a new routine (see
Figure 10-45). In this example the routine was given the name SFC_Routine.

=i Controller SIC_Pyojact -~
k,' Comtroller ¥ags
L Camtcien andl iarsion
| Prower -Lip Hardier
55 Taths
" Maint ah
- LI Marfvog am

’ oy i L
E Mt Suliee

| SIFC_Rowtine

Figure 10-45 SFC Routine added.

Study Figure 10-46. This program has three steps. The program will stay in the
Start_step until transition Tran_000 is true. The transition in this case is a Boolean tag
named Run_bit. When you try your program, you can force this bit true to move to the
second step.

Step_1 is used to turn the green light on for 30 seconds. The Preset in the step prop-
erties must be set to 30000 milliseconds (30 seconds). When the step time has reached

CHAPTER 10—SEQUENTIAL FUNCTION CHART (SFC) PROGRAMMING 247

30000, the step’s DN bit (Step_1.DN) will be set to 1. This will make the next transition
true, and the next step will be executed. Step_2 turns the green light off. Then the pro-
gram ends at the stop.

Taga OO0
e 3
Ct
ri -
IN J MM_OICID
i
Lres = 1
Thep 0
Yiga OOF
| 3
e 1 %W
| Ll] M-A_Ml
i
[} ee =
fep
Tea SO

cep £.08

I
'

ale

. $hap O

Figure 10-46 SFC program with three steps.

Adding Program Elements

Programming an SFC essentially consists of dragging and dropping program elements
(steps and transitions) and then configuring the program elements and adding actions.
To begin the program, select the step and transition icon from the toolbar (see
Figure 10-47). Drag it to the programming screen. Next select another step and transition
icon from the toolbar and drag to the programming just under the first transition until you
see a green dot. When you see the green dot, you can release the mouse button and the

248 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

second step will be connected to the first transition. Add the third step and transition. Then
select the stop icon from the toolbar and drag and drop it below the last transition.

a0t of e
wotof miscama Wb

Figure 10-47 The SFC toolbar. (Courtesy of Rockwell Automation, Inc.)

Right-click on the first step and select properties or click on the ellipses button
on the step to get the properties screen. This is the first step (initial step) so you must
choose the Initial checkbox (see Figure 10-48).

Genaral | Action Osder| Tag |

Tsom " Nomsal
= behal

oot |0 B-rllntm Def e I
T 0 m @D @ Fmscan
: x Futhoed
Times Max IE B“:M :sl.:Son
Lawre [5 3 D Fleset

I AsmEnetle D Aharmhiagh
D Al owe

L, fﬁ—a-rwmll
o [')—B-I‘untmﬂl

¥ Show achons in soubne
I Moever dapiay deacaghon n soubre

ok | caed | o | He |

Figure 10-48 Step properties for the initial step.

CHAPTER 10—SEQUENTIAL FUNCTION CHART (SFC) PROGRAMMING 249

As shown in Figure 10-49, right-click on Step_1, select properties, and enter a Preset
of 30000 milliseconds (30 seconds). Next you can right-click on Step_001 and choose add
action. Double-click in the bottom of the action, and you can enter your ST for the action
as shown in Figure 10-50. Step_2 has one action to turn Green_1 off. This step will not
need a preset time. You can add an action for Step_2 and add the action.

dlep Properiies - Step 001

Gerwsal" | Action Osder| Tag |

Proset |muo E-F'Uutm |
T [0 e ©Dow [Fuuscan

e e 3% 1 S8R
Cournt]0 3 QD Rewet
Sy
[AlamEnsble -
D Aharslowe

Limiighe m-r'u-otm;l
LimitLow m-rtlutm;l.

W Shuom achisme a0 soubire
[Mgwtn dughay Seacspion i soube

o | Coce | Aok | Heo |

Figure 10-49 Step properties. Note that a Preset of 30000 milliseconds was used to create a
30-second preset.

250 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

foaa_Gtep
-
L)
LEF
L]
s Pis
&
L Asthoa OO
i
Freen 1 :=],
ftep OOV |
L)
Tean 0D
L]
LA 1.08
i
i —
LI N | Action 001
e Fireer | = 3
Ltep ___'Z!I:,"..
-
Tean OO
| .
T ep s
i
c
. $isp O

Figure 10-50 ST for the action.

At this point the program would still have errors because the Green_1 tag has not
been created. This program has three step tags, two action tags, one tag in the actions
and three tags in transitions that were created automatically when the elements were cre-
ated. Right-click on the step tag name for the first step. In this example the tag is named
Start_step. Right click on the tag and choose Edit tag to rename the tag. This tag type
should be SFC step. Do the same for the other step tags. Next rename the tags for the
transitions. These should be BOOL type. Lastly create the Green_1 tag. This could be an
alias for a real-world output or a bit.

Programming a Simultaneous Branch

Simultaneous branches are programmed as shown in Figure 10-51. Click on the start of
simultaneous branch button on the toolbar (see Figure 10-47), then drag it to where you
want it. Next add paths to the branches. Click the first step of a path that is to the left

CHAPTER 10—SEQUENTIAL FUNCTION CHART (SFC) PROGRAMMING 251

of where you want to add the path, then click on the horizontal line of the simultaneous
branch. After you have added the steps, the simultaneous branch can be wired to the pre-

ceding transition by clicking the bottom pin of the transition and then the horizontal line
of the branch. A green dot will show the valid connection point.

Bt 00D
o
-
Teas OO0
L]
P Are
.
- - -
| A
$tep OO1 frep OO $tee 00D
- - '
Tiaa_000 Teaa 002 Tean 001
] L . "
enior 1 varte Done Fregsure EniEor
o £r Ct
M i i
ftes O ey 005 f%eg OO0
- - - r - - - ¥ * - -
w - -
4
L)
Fega Ol
M
e ess Ry aet e

Figure 10-51 A simultaneous branch SFC.

Ending a Simultaneous Branch

To end a simultaneous branch, the last step of each path in the simultaneous branch is se-
lected. Each branch must end with a step, not a transition (you will be connecting the last
step of each branch to the simultaneous branch end, not transitions). This can be done
by clicking and dragging the pointer around all of the desired steps. Or you may click on
the first step and then press and hold the shift key down while clicking on the rest of the

252

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

desired steps. Then you will click on the simultaneous branch end button in the SFC
toolbar. It is located just to the right of the simultaneous branch icon in Figure 10-47. A
transition can be added to the branch end.

There is another way to program the end to simultaneous branches. Wire from the
connection point on the end of each step to a connection point on the end of the next
step, and they will be joined with a simultaneous branch.

Programming a Selection Branch

Figure 10-52 shows a selection branch program. To add a branch, click on the start of
selection branch button on the SFC toobar (see Figure 10-47) and drag the branch to the
desired location. To add a path, select (click) the first transition of the path that is to the
left of where you want to add the new path. Then click the start of selection branch but-
ton. Add the rest of the paths. To wire the selection branch to the preceding step, click
the bottom of the step and then click on the horizontal line of the branch. A green dot
shows where the connection point is.

yiep (s
o

.) . .

Traa O0S Tean O09 Tian OO Teaa Q00
. 2 " . " =

ansor 1 EnsOr . fensot Fass Thr
H
i £ B .
- - -
L}] o ’
Aese=1% g el fse=tiy []

- ' - ' I
h - .

Tean Q0% Teaa L o 11
= B "]

Asseable. DN Feld Asseadily.DB Painze . DN
F o r

]
" am
Figure 10-52 Programming a selection branch.

CHAPTER 10—SEQUENTIAL FUNCTION CHART (SFC) PROGRAMMING 253

Ending a Selection Branch
Figure 10-51 also shows how to end a selection branch. First you must select all of the
last transitions for each path (select the first transition and then hold the shift key down as
you select the rest of the transitions). Then click on the end selection branch button. The
other way to end a selection branch is to wire the connectors of each of the transitions
together, and the end selection branch will be created automatically.

Note that a step follows a selection branch end.

Setting the Priorities for a Selection Branch

A selection branch evaluates the transitions in a selection branch from left to right. The
first branch transition that is true will be executed. You may also change the execu-
tion priorities for each branch. To change priorities, right-click on the horizontal line
that starts the selection branch and then choose Set Sequence Priorities. Figure 10-53
shows the priorities screen. Uncheck the Use default priorities check box. Select one
sequence at a time and you can move them into the order you would like. Click OK

when complete.
Set Sequence Priorities X

[Use default prosis fleft 4o sght on soulirne)
ProshfSequnce _Descrpton

1 Tean_00S
2 T

& Tean_008

O

ok | _Coce | Wi |

Figure 10-53 Sequence priority screen for a selection branch.

254 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

DOCUMENTATION OF SFC PROGRAMS

There are several methods to document an SFC program. Descriptions can
be added for tags just like in ladder logic or any of the languages. Comments
can be added in ST. Figure 10-54 shows an example of a comment in an action
using ST.

N] Adien_000
i L enper®
Step 000 Rozory = 1

-

Figure 10-54 Comment added to an action in ST.

Text boxes can be added to program elements to document the program. In
Figure 10-55 a text box was added to a step to help explain the purpose of the step. To
add a text box, select the text box tool from the toolbar. A text box will appear that you can
move around. Select the pushpin on the text box and you can attach it to the desired ele-
ment by dragging the wire to the element.

anste bum o8 e 00 |

1. Click

A text box appeass. |
= 4

Figure 10-55 Adding text boxes. (Courtesy of Rockwell Automation, Inc.)

CHAPTER 10—SEQUENTIAL FUNCTION CHART (SFC) PROGRAMMING 255

QUESTIONS
1. What do the letters SFC stand for?
2. What types of applications is SFC programming best suited to?
3. What is a step?
4. What is an action?
5. How can the order of action execution be changed?
6. What is a transition?
7. On paper, write a start step and a transition. Use a bit named Start for the transition.
8. Write a three-step program on paper. The first step is a start step that will wait until

the run bit is true to move to the second step. Step 2 should turn on an output that
turns a a motor on. The step should executefor 30 seconds. The last step should turn
off the motor output. Explain how the step will be set up to run the motor for 30 sec-
onds and what will be used for the transition.

9. Write a SFC routine in RSLogix 5000 from question 7 and make it continuously re-
peat after the run bit is turned on. The output should be on for 30 seconds and off for
5 seconds.

10. Explain how the order of execution is determined for selection branches.
11. Explain the following logic:

N
-
Mix

_| Trans_1

JSR(Process_Done) ;

12. Explain the following logic:

N
o
Mix

_| Trans_1

Sensor_1 & Sensor_2

256 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

13. Explain the following logic:

A
[~
Mix

_| Trans_1

Sensor_1 & NOT Sensor_2

14. Explain the following logic:

A
ol - N | ... Action_000
= Conveyor: = 1;
Step_ 000
_...| | Tran_000

Step_000.DN

15. Explain the following logic:

N
N LN |_| Action_007
If Action 007.Q then
Step_002 Heater Output: = 1;
U Else
Heater Output: = 0;
End_if;
16. Explain the following logic:
11
_| AN I;IAction_001
Step_001 Heater : = 1;
= POI;I Action_002

4] Heater : = 0;

CHAPTER 10—SEQUENTIAL FUNCTION CHART (SFC) PROGRAMMING 257

17. Explain the following logic:

18. Explain the following logic:

Opeie Al 4 MD Opeis B i

258 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

19. How can comments and text boxes be added to an SFC routine?

20. Write logic that uses ladder logic to determine the state of a transition.

21. Write logic in an action to call a subroutine.

22. Develop an SFC routine on paper or in a CLX to accomplish the following:

Step 1

Wait for Start_Switch.

Step 2

Turn a discrete valve named Product_A_Valve on. Turn on the output
named HEAT. This step should run until a tag named Level_Fill__
Sensor becomes true. When the step is done, the valve should be
turned off but the heater output should remain on.

Step 3

Turn on Valve_2, and turn on the output named Mix_Motor. This step
should continue until Level_2_Sensor becomes true. When the step
ends, you must turn Valve_2 off.

Step 4

This step should continue until the Temp_tag reaches 150 degrees.

Step 5

Then turn Mix_motor and the heater off. Turn on the drain valve until
Tank_Empty_Sensor is true. Run a subroutine named Bottle_Routine.

Return to Step 1.

23. Write an SFC routine for the following application:

This is a simple heat treat machine application. The operator places a part in a fixture
then pushes the start switch. An inductive heating coil heats the part rapidly to 1500 de-

grees Fahrenheit. When the temperature reaches 1500, the heating coil turns off and a
valve is opened for 10 seconds to spray water on the part to complete the heat treatment

(quench). The operator then removes the part and the sequence can begin again. Note
there must be a part present or the sequence should not start. For simplicity assume the
analog temperature sensor outputs a value that is equal to the actual temperature.

1/0 Type Description

Part_Present_Sensor Discrete Sensor used to sense a part in the fixture

Temp_Sensor Analog Assume this sensor outputs a value that
exactly corresponds to 0-2000 degrees
Fahrenheit

Start_Switch Discrete Momentary normally open switch

Heating_Coil Discrete Discrete output that turns coil on

Quench_Valve Discrete Discrete output that turns quench valve
on

CHAPTER

LI

Function Block Diagram
Programming

OBJECTIVES

On completion of this chapter the reader will be able to:
= Explain what function block programming is.
» Explain the types of applications that are appropriate for function block
programming.

= Develop function block routines.

INTRODUCTION

Function block diagram (FBD) programming is one of the IEC 61131-3 languages. FBD
is a powerful and friendly language once you have learned the basics. A function block
can take one or more inputs make decisions or calculations, and then generate one or
more outputs. A function block can output information to other function blocks. There
are many types of function blocks available to perform various tasks. Function block
programming can simplify programming and make a program more understandable. In
ControlLogix the user develops a function block routine and uses a JSR instruction to
run the routine from the main routine or another routine.

FBD programming is very useful for applications where there is extensive informa-
tion/data flow. Process control typically involves more data flow and calculations than
discrete manufacturing applications.

260

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

ADD Function Block

When you use a function block instruction in a routine, a tag is created for the function
block that has several tag members. Figure 11-1 shows an ADD function block. The name
of the function block (ADD_01) is the default name that is automatically created when
you put the ADD function block into the routine. You can use the default tag name or
you can change the tag name. The function block tag members are used to store configu-
ration and status information about the instruction. Each function block tag has several
tag members that can be used in logic. Figure 11-2 shows the tag and tag members that
are created when you use a function block. In this example, five tag members were cre-
ated that all use the name ADD_01 followed by a period (.) and a member name. These
tag members can be used in logic.

Figure 11-1 An ADD function block.

The EnableIn tag member (ADD_01.EnableIn) could be used in logic to enable this
function block. The ADD_01.SourceA member would be the first of two values to be
added. The tag member ADD_01.SourceB would be the second value to be added. Tag
member ADD_01.EnableOut can be used to determine whether the result of the in-
struction is actually output. ADD_01.Dest is the output of the instruction. It is the result
of the addition and would be put into the tag member Total. You do not need to use all
of these tags. You could simply input a value to the SourceA input and a value to the
SourceB input, and the instruction would output the sum of the two values to the Dest
output line of the instruction.

Scoge [MarProgam w| Show [Shom Al] see [
T ag Name & | Value *|
[|= ADD_O1 (aee)
|| ADD_01 Enablein | |
|| - ADD_01 Soucer 0.0]
[ADD_01 Sourced 0.0
I ADD_01 EnablleOut 0
= ADD_01 Dest 0.0

Figure 11-2 The tag members for an ADD function.

CHAPTER 11—FUNCTION BLOCK DIAGRAM PROGRAMMING 261

By right clicking on the function block, its parameters can be set (see Figure 11-3).
Note that in this example, SourceA, SourceB, and the Dest were enabled. Function block
instructions allow the programmer to determine which inputs and outputs will be used.
Note that in this example the EnableIn was not checked to be used, but its value is 1 so
the instruction is enabled.

Figure 11-3 Properties of an ADD function block.

Function Block Elements

Function blocks are used to take inputs, do some processing, and then provide one or
more outputs. There are several methods to get information into and out of a function
block. If you want to use tag-type information for an input to a function block, you would
use an input reference (IREF). If you want to put the output from a function block into a
tag, you would use an output reference (OREF) (see Figure 11-4).

TONR_O1
TONR i OCON
Timer On Delay with Reset <4
0 1]
| Timer_Enable_Bit B ——] TimerEnable ACC 2 O A lated_Time
'REF<) | —» [5000):»m;c FRE DN [— Dont:gt , 2.2)
& Timer_Reset_Bit)}0— —] Reset v A
OREF Sheet Reference
GRT_01
ICON GRT =
OREF
< Greater Than (A>B) N

0
(" Accumulated_Time) d Sourcer Dest |— — —@
2000
v 2C1]_;amt;))—c SourceB
Sheet Reference

IREF

Figure 11-4 |IREFs, OREFs, an OCON, and an ICON.

262

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Function blocks can be connected to other function blocks by wiring their outputs
to the input of another function block. If there are many function blocks on a sheet, the
wiring can make the logic confusing. The other way to connect the output from a func-
tion block to the input of a function block is to use output connectors (OCONs) and input
connectors (ICONs) (see Figure 11-4). ICONs and OCONSs are used as connectors be-
tween function blocks. An OCON is an output connector and an ICON is an input con-
nector. You cannot have an OCON without using an ICON of the same name. The table
in Figure 11-5 shows what OCONs, ICONs, IREFs, and OREF's are used for.

Need ‘ Element to Use

To send a value to an output device or a tag. Output reference (OREF)

To receive a value from an input device or a tag. Input reference (IREF)

To transfer data between function blocks. Note they | Output wire connector (OCON) and input wire

can be on the same sheets or on different sheets. connector (ICON)

To send data to several places in a routine. Single output connector (OCON) and multiple input

wire connectors (ICONs)

Figure 11-5 Purpose of references and connectors.

When you use an IREF or an OREF you must create a tag or assign an existing tag to
the element. You may use any of the tag data types for an IREF or an OREF.

Order of Execution

The order of execution is controlled by the way elements are wired together and by indi-
cating feedback wires if they are required. The location of a block does not affect the or-
der in which blocks are executed. Figure 11-6 shows an example of a simple FBD and the
symbols. Note that the wire type indicates which type of data is being shared. A BOOL
value would be a dashed line, and a solid line would indicate a SINT, INT, DNT, or
REAL value. If function blocks are not wired together, it does not matter which block
executes first as there is no data flow between the blocks. If blocks are wired sequentially,
the execution order moves from input to output. The data must be available before a
controller can execute a block. In Figure 11-6, the second function block (GRT_02) must
execute before the third function block (BAND_02) because the output of the second
function block is an input to the third function block.

Integer or Real Data
TONR_O2 GRT_02 BAND_02

TONR GRT e BAND
Timer On Delay with Reset Greater Than (A=B) Boolean And
0 * 0 0
— @ TimerEnable acc P = Dest [p—] Int outfr—
1] 2000
:l—-l SourceB —] In2
e e =
L4
Binary Data

Figure 11-6 Simple FBD.

CHAPTER 11—FUNCTION BLOCK DIAGRAM PROGRAMMING 263

In Figure 11-7 there are two groups of blocks on one sheet. Execution order is only
important for the blocks that are wired together.

TONR_02 GRT 02 banNd 02
1Ol | | 1 44 I | DA
Times Oa Dalpy witn Reset dew phas Thga (ArD Wizieps bt
- P] Timadn bl T2 o] = —— [P— et [y €] It 2 [€ ye—
1 y B - - 000
b e ;\—w:l'l-l :-.:vn-‘ JO0) :-—_:'. 1L "_-.p: g
=3 o s] Rasat l
— e — —— — — — — —
ADD_02
Ll
Ale
. by 154 0
Temg 1 D——1 tetcah Dt [e—— e

- -8
Temp 2 e} S 4wt

Figure 11-7 Execution of blocks that are not connected.

Feedback

Feedback to a block is done by wiring an output pin from a block to an input pin on the
same function block. The input pin would receive the value of the output that was pro-
duced on the last scan of the function block. Study Figure 11-8. In Figure 11-8 the DN
bit (TONR_02.DN) is used to reset the timer.

TONR_02
T O
fumgs O Peldy i Hesat
!.uﬁ.gn‘ee.”!l‘_oq e =l Timednadle AL C [p—— ‘.gga;—_!u«rfm‘:'é.‘
== dt 1
D,ﬂ.{:vm. [t PR L] :-f. -
=] Heset l

Figure 11-8 Feedback loop.

A controller cannot determine which function block to execute first for func-
tion blocks that are in a loop. The programmer must identify which block should be
executed first by marking an input wire with the Assume Data Available Marker

264 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

(see Figure 11-9). The arrow indicates that this data serves as the input to the first
function block in the loop. Only one input to a function block in a loop should be
marked. To add the Assume Data Available Marker, select the wire, right-click the
mouse, and select the Assume Data Available choice.

TONR_01
TONR

Timer On Delay with Reset

mu —& TimerEnable ACC

]
Cycle_Freset [} PRE DN
pi] Reset
Assume Dala —

Available Marker

nutgo—T—

Figure 11-9 Assume Data Availab

BAND_D1
BAND
0 Boolean And
:)I’J
— — — — — &In1
(s _peus
le Marker.

Figure 11-10 shows that if there is more than one connection between function
blocks, they must all either be marked with the Assume Data Available Marker or none
must be marked. The top example in Figure 11-10 is incorrect. The bottom example is

correct.
rand O
lesdiil
Ik &= A
e 22810 0vt [
foovt 2 o g Ot fopmm
Ay 11
[0
il T F L TR
lopet 1 B & (= s35e 04 1>
1 |
fap_2 s £ :‘.' -

hand 06

LR

1.4 :‘-: = &F Mhetsa)

Figure 11-10 Use of the Assume Data Available Marker.

The Assume Data Available Marker can be used to create a one-scan delay between
blocks (see Figure 11-11). In this figure, the first block is executed and then the sec-
ond block uses the data that was generated in the previous scan of the function block

routine.

CHAPTER 11—FUNCTION BLOCK DIAGRAM PROGRAMMING 265

haypd 11 hayd 0
[| [,
[& &5 A i & 3= A
i‘#"! 1 ke : o] it A B> .] Dt D> & Mhatas 3
Jagpa_2 1
Figure 11-11 Use of Assume Data Available Marker to create a one-scan delay.
IREFs are used to provide input data to a function block instruction. The data in an
IREF is latched (won’t change) during the function block scan. IREF data is updated at
the beginning of a function block scan.
Summary of the Execution of a Function Block Scan
1. The processor latches the data in all IREFs.
2. The processor executes the function blocks in the order determined by their
wiring.
3. The processor writes outputs to the OREFs.
Connectors

ICONs and OCONGs are used to transfer data between output and input pins (see
Figure 11-12). They can be used to pass information between function blocks instead
of wires when the elements you want to connect are on different sheets, when a wire
might be hard to route on a sheet, when you want to provide the data to several points
in a routine, or when you wish to pass data to another sheet of FBD. Note that in
Figure 11-12 the output Accumulated_Time from the TONR_01 function block
is used as the input Accumulated_Time to the GRT_01 function block. Note also
that if SourceA (Accumulated_Time) were greater than SourceB (2000), the output
(Dest) would be true. Accumulated_Time is not greater than 200 in this example
so the output is false. Note that the input lines to the GRT function block are solid
and the output line is dashed. The dashed line means that the output is a discrete
value (1 or 0).

266 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

TONR_002

Times Gaable Do 1 £l Temedf s ghie - - <1 hoggmgigted ¥omg
Si000 | - Ty P N D - %

¥
mar Meset P o £ W etet

Artpmigted Pome » 3 ek et > &1 1

Figure 11-12 Use of connectors instead of wires.

Using Connectors

Each OCON must have a unique name. Connector names follow tag name rules,
although they are not tags. Each OCON must also have at least one corresponding
ICON. In other words, there must be at least one ICON with the same name as the
OCON. Multiple ICONS can be used for the same OCON. This enables you to use an
output value (OCON) in multiple places in your routine as an ICON.

MATHEMATICAL FUNCTION BLOCKS

There are many types of function blocks available. Mathematical function blocks are one
type. Lets examine a few function blocks to see how a typical function block works.

ADD Function Block

An ADD function block can be used to add two numbers or the values of tags or numbers.
Figure 11-13 shows an example of the use of an ADD function block. In this example two
constants (numbers) were used as the inputs. Here 212 was added to 93 and the result
was put into the output reference tag named Total. You can see that the result (305.0) is
also shown above the output pin.

Figure 11-13 An ADD function block.

CHAPTER 11—FUNCTION BLOCK DIAGRAM PROGRAMMING 267

SUB Function Block

A SUB function block can be used to subtract two numbers or the values of tags or num-
bers. Figure 11-14 shows an example of the use of a SUB function block. In this example
two constants (numbers) were used as the inputs. Here 93 was subtracted from 212 and
the result was put into the output reference tag named Total. You can see that the result
(119.0) is also shown above the output pin.

s - ' " T— s -
PR - .y tewrieh ezl e] “fa
]

Figure 11-14 A SUB function block.

MUL Function Block

A MUL function block is shown in Figure 11-15. There are two inputs and one output. In
this example, 212 was multiplied by 93 and the answer (19716.0) was output to the output
reference tag named Total.

Figure 11-15 A MUL function block.

DIV Function Block

A DIV function block is shown in Figure 11-16. There are two inputs and one output. In
this example, 212 was divided by 93 and the answer (2.2795699) was output to the output
reference tag named Total.

268

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Figure 11-16 A DIV function block.

Boolean AND (BAND) Function Block

A BAND function block can be used to compare two or more discrete inputs (see
Figure 11-17). If all are true, the discrete output of the function block will be true. If
any or all are false, the output will be false.

This is a very useful instruction. There are many times in an application when we
need to do something if exact input conditions are met. For example, if Sensor_1 is true
AND Sensor_2 is true AND Sensor_3 is true AND Sensor_4 is true and we want to out-
put a true from the instruction, BAND is the perfect instruction.

ased 02

[e

esges 1 e i) g D> 1w Reiigm
L '

edges_J » W)
L '

i) » 9
1 r i

esdes o * %! enk

Figure 11-17 A BAND function block.

Boolean OR (BOR) Function Block

A BOR function block can be used to compare two or more discrete inputs. If any are
true, the discrete output of the function block will be true. Figure 11-18 shows an exam-
ple of a BOR function block. Note that there are four discrete inputs in this example. If
one, some, or all of the four inputs are true, the output will be set to true. In this example
only input 3 is true and the output is set to true. Note that if you right-click on a BOR
function block, you can reduce or increase the number of inputs.

CHAPTER 11—FUNCTION BLOCK DIAGRAM PROGRAMMING 269

feass I P — —l Pl D] bgs, =
» { |
e 2 > - = .;.:
¥ = "
Sesgee] e m— ..:;_.:
»
Seagne & [i .-—.-.@.: sl

Figure 11-18 A BOR function block.

Figure 11-19 shows additional Compute/Math function blocks that are available.
These function blocks include add, subtract, multiple, divide, modulo, square root, ne-
gate, and absolute. The MOD instruction is used to find the remainder of a division. The
NEG instruction is can be used to change the sign of the Source and places the result in
the Dest. The absolute instruction (ABS) takes the absolute (positive) value of the Source
and places the result in the Dest.

mlmlmlolulmlmlunlﬁl
urber X Comgare) saar, Ve,

Figure 11-19 Compute/Math function block instructions.

TRIGONOMETRIC FUNCTION BLOCKS

Figure 11-20 shows trigonometric function blocks. Trigonometric function blocks include
sine, cosine, tangent, arc sine, arc cosine, and arc tangent.

!IIUICMI Iﬂllﬁllllﬂilﬁllﬂl

Figure 11-20 Trigonometric function block instructions.

STATISTICAL FUNCTON BLOCKS

Figure 11-21 shows statistical function blocks that are available. A MAVE instruction is a
moving average instruction. The MSTD instruction can be used to calculate the moving
standard deviation for a process. The MIN instruction is actually a MINC instruction. It
means minimum capture. The MINC instruction finds the minimum of an input signal

270

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

to the instruction over time. The MAX instruction is actually the MAXC instruction. The
MAXC instruction finds the maximum of an input signal over time.

mlmwl nin I "ie I
OIS\ statrstsc ot TR

Figure 11-21 Statistical function block instructions.

Moving Average (MAVE) Instruction

The MAVE instruction calculates a time, average value for the In signal. This instruc-
tion optionally supports user-specified weights. It is available in function block and
ST programming. An example of the use of this instruction is to monitor the size of
product that is being made. This instruction could look at a moving average so that
the correct adjustment could be made on the basis of the average size of a number of
products that are made rather than just the last one made. This can make adjustments
more accurate.

Initializing the Averaging Algorithm

Certain conditions, such as instruction first scan and instruction first run, require the in-
struction to initialize the moving average algorithm. Figure 11-22 shows an example of a
MAVE instruction.

Each scan, the instruction places the input value from the In_Value tag in the
StorageArray named Values. The most current input is put in the first element
(Values[0] in this example) of the array named Values. The instruction calculates the
average of the values in the StorageArray, optionally using the weight values in array
weight, and places the result in Out. Note that a new value is input every scan that this
instruction is true.

L Wiles - {1 b= o ™ <1 hoscpie _Viles
Lrepgedur gy F 2

A ezt

Figure 11-22 Use of a MAVE instruction.

CHAPTER 11—FUNCTION BLOCK DIAGRAM PROGRAMMING 271

Minimum Capture (MINC) Instruction

The MINC instruction finds the minimum of the input signal over time (see Figure 11-23).
A good example of this might be to record the lowest temperature in a process during one
day of operation. This instruction is available in function block and ST programming. The
parameters for a MINC instruction are shown in Figure 11-24.

el OO0

W N

Woe s s gan g
Y hezat
Phhgie® give
Figure 11-23 A MINC function block.
Inputs/Outputs ‘ Data Type ‘ Description
Enableln BOOL If the Enable Input (Enableln) is cleared, the instruction does not
execute and outputs are not updated.
In REAL This is the analog signal input to the instruction. Any float is valid.
Reset BOOL This is a request to reset the control algorithm. This instruction
sets Out = ResetValue as long as Reset is set. Any float is valid.
ResetValue REAL This is the reset value for the instruction. This instruction sets
Out = ResetValue as long as Reset is set. Any float is valid.
EnableOut BOOL Enable output.
Out REAL This is the calculated output of the algorithm.

Figure 11-24 Parameters for a MINC instruction.

There is also a maximum capture (MAXC) instruction available to capture a maxi-
mum value from an input. An example of its use is to record the highest temperature
during a day of production.

MATHEMATICAL CONVERSION FUNCTION BLOCK INSTRUCTIONS

Figure 11-25 shows some mathematical conversion function blocks. A DEG instruction
can be used to convert radians to degrees. A RAD instruction is used to convert degrees
to radians. A TOD instruction can be used to convert an integer to a BCD value. A FRD

272 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

(convert to integer) instruction can convert a BCD value to an integer. A truncate (TRN)
instruction is used to truncate an integer or a real value.

4]Jd|o]o x| miwojmo]mojm])
22 A A - [

Figure 11-25 Mathematical conversion function block instructions.

Scale (SCL) Instruction

The SCL instruction converts an unscaled input value to a floating-point value in engi-
neering units. These are very useful for converting the counts from an analog value to a
number that makes more sense to an operator, for example, scaling the counts from an
encoder on a motor to an actual speed in RPMs. Figure 11-26 shows the use of a SCL
instruction. In this example the input raw values will be between 0 and 600. The SCL
instruction will scale the input to a value between 0 and 60.

s _Vatee L 1
< e

¥ - U% ¥i_Stdled

[B g W &) g
.

¢ = -
" il

i - ‘

[

O T N N
o UM g

wff tele

D > =

Figure 11-26 A SCL function block instruction.

FUNCTION BLOCK TIMERS

Figure 11-27 shows a timer on delay with reset (TONR) function block. It should look
fairly familiar. It has the same basic inputs, parameters, and outputs as a TONR ladder
logic timer. This timer was named TONR_01. TONR_01 is the default name and it can
be changed. The TimerEnable input is used to enable the timer. In this example an input
reference uses a tag named Start to enable the timer. A constant value (30000) was used in
an input reference for the PRE value. The time base for CLX timers is milliseconds so this
timer would be a 30-second timer. The accumulated time of the timer is being output to
an output reference tag named ACC. The timer’s DN bit (TONR_01.DN) is being used to
reset the timer.

CHAPTER 11—FUNCTION BLOCK DIAGRAM PROGRAMMING

273

Figure 11-27 A TONR function block. Note that the DN bit was wired to the Reset input of
the timer to automatically reset the timer when the DN bit becomes true. Note also that the

connection is a dashed line. This means the connection passes a discrete value.

FUNCTION BLOCK COUNTERS

Figure 11-28 shows a function block counter. This counter can be used to count up and

to count down.

Note that there is a count-up enable input and a count-down enable input. There
is also a preset input (PRE) and a Reset input. The counter outputs include the present

count (ACC) and a DN bit. The DN bit is set if the ACC is equal to the PRE.

Imagine a manufacturing cell where a component enters the cell to be worked on. As
it enters the cell we might want to add it to the count of parts ready to be worked on. We
could use a sensor (Part_In_Sensor in this example) to sense the part coming in as an in-
put to the count-up input of the counter. As a part is finished and leaves the cell, we could
have a sensor (Part_Out_Sensor) sense it leaving and use it as an input to the count-down
input of the counter. The counter’s accumulated value would always contain the number
of parts actually in the cell. If we set the PRE value to 2, we could use the DN bit to warn

the operator when there are only two parts left in the cell.

P o ba fesges e "

(F ,‘!_ Setdpe 3= n

Figure 11-28 A count-up and count-down counter.

' 1 Dpergter Al p=mn

274

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Figure 11-29 shows the timer and counter instructions that are available in func-
tion block programming. The TONR instruction is a nonretentive timer that accamulates
time when TimerEnable is set. The TOFR instruction is a nonretentive timer that ac-
cumulates time when TimerEnable is cleared. The RTOR instruction is a retentive timer
that accumulates time when TimerEnable is set. The CTUD instruction counts up by 1
when CUEnable transitions from clear to set. The instruction counts down by 1 when
CDEnable transitions from clear to set.

lwl lwaltlmlc mpl

Figure 11-29 Function block timers and counters.

PROGRAMMING FUNCTION BLOCK ROUTINES

To start a function block program, right-click on the main program (see Figure 11-30).
Then you will add a new routine. Choose Function Block for the type of routine and give
it a name. In this example the routine was given the name Stop_light_FB. It is shown
below the MainProgram in the Controller Organizer in Figure 11-30.

=4 Controllien STP_Light I8 -~
h’ “ontroller Tags
Lt Comtrcier ®ayl sardien
L Powosr U Hamdier
=i Tatks
= £ MainTah
=N ' Mhauiniy gy s
| Prograes Tags
é M it
23 Swop_Light_re
I Undcheduled Pragy amd
=4 Migtion Grougd

I Uy ougind A
I Teonds v

Figure 11-30 Program list in RSLogix 5000. Note the routine named Stop_light_FB. The ICON
shows that it is a function block routine.

The next example will use timer (TONR) and limit (LIM) function block instructions.
Figure 11-31 shows the use of a TONR timer function block. The TONR has a preset of 30000
ms (30 seconds). It has accumulated a count of 28385 at this point in time (about 28 seconds).

The LIM function block will be used to check to see if a value is between a low and
a high limit. If the input to the LIM function block Test input is between the LowLimit

CHAPTER 11—FUNCTION BLOCK DIAGRAM PROGRAMMING 275

and HighLimit, the output from the LIM function block will be true. In this example the
output will only be true if the input is between 0 and 10000. In this example the output
from the LIM function block is a real-world output.

1 Lol i Uit Iom 3| L 40 D0

Figure 11-31 Two function blocks wired together.

Study Figure 11-32. This is the same application as shown in Figure 11-31, but
programmed slightly differently. The two function blocks in this example are not wired
together. An OCON and an ICON are used to pass information between the two function
blocks. Note that the input to the LIM instruction is an ICON named ACC in this example.
ICON ACC gets its data from the OCON output from the TONR function block. Note that
these two function blocks are not connected but work together. The TONR output OCON
(ACC) provides input to the TEST input of the LIM through the ICON (ACC). If ACC is
between 0 and 10000, the LIM function block’s output will be set to true. The numbers and
letters under the ACC output show the page and are of the page where this output is used.
Note that the output is an OCON named ACC. This application would perform exactly as
the one shown in Figure 11-31. Note also that the use of an OCON and an ICON would
enable these two function blocks to be on different sheets of the function block routine.

Figure 11-32 TONR and LIM function blocks.

276

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

In RSLogix 5000 a function block routine can be broken into multiple sheets. Sheets
are like separate pages of a program (see Figure 11-33). This helps you organize your
program and make it easier to understand. Sheets do not affect the order in which the
function blocks execute. When a function block routine executes, all sheets execute. It is
a good idea to use one sheet for each device that is to be programmed. In Figure 11-33
there are four sheets (pages) of an FBD program. In this example each sheet controls one
device. Note that this is about as simple as it gets. Normally there might be multiple func-
tion blocks on a page to perform different but related tasks.

Sheet 1 of 4 ' ' Sheet 3 of 4
BAND_01 BAND_03
BAND BAND A |

Boolean And Boolean And

0 0 0
- r.| nput_1 = In1 outlpa Motor 3 |
0
nput_2 0

Sheet 2 of 4 Sheet 4 of 4
BAND_02 BAND_04
BAND = BAND
Boolean And Boolean And
0 0 1] 0
nput_2 In2 nput_2 In2

Figure 11-33 Multiple sheets in a function block routine.

ADDITIONAL FUNCTION BLOCKS
Select (SEL) Function Block

The SEL function block uses a digital input to select one of two inputs. This instruction is
only available in function block programming. An example is shown in Figure 11-34.

The SEL function block selects Inl or In2 on the basis of SelectorIn. If SelectorIn
is set, the instruction sets Out = In2 (see Figure 11-34). If Selectorln is cleared, the
instruction sets Out = Inl. In this example 0 was input to SelectorIn so the value at Inl
(150) is output to the OREF named Result.

Temg 1 o S] bt Dt - ok < P

Figure 11-34 A SEL function block.

CHAPTER 11—FUNCTION BLOCK DIAGRAM PROGRAMMING 277

PROGRAM/OPERATOR CONTROL OF FUNCTION BLOCKS

Several function blocks support program/operator control. Program/operator control
enables the programmer to control these instructions alternatively from a program or
from an operator interface device. When an instruction is in program control, the in-
struction is controlled by the program inputs to the instruction. When an instruction
is under operator control, the instruction is controlled by the operator inputs to the

instruction. Program or operator control is determined by the inputs shown in the table
in Figure 11-35.

Input ‘ Description

.ProgProgReq A program request to go to program control
.ProgOperReq A program request to go to operator control
.OperProgReq An operator request to go to program control
.OperOperReq An operator request to go to operator control

Figure 11-35 Table showing program/operator control inputs and options.

If both ProgProgReq and ProgOperReq are set, the instruction will be under opera-
tor control.

You can determine whether the instruction is in program or operator control by look-
ing at the ProgOper output. If ProgOper is set (1), the instruction is in program control.
If ProgOper is set (0), the instruction is in operator control.

Program request inputs take precedence over operator request inputs. This enables
the user to use the ProgProgReq and ProgOperReq inputs to lock an instruction in the
desired mode. For example, assume you always want an instruction to operate in opera-
tor mode. You do not want the program to control the running or stopping of the in-
struction. To do this, you would input 1 into the ProgOperReq. This would prevent the
operator from putting the instruction into program control by setting the OperProgReq
from an operator input device. Let’s examine one instruction that utilizes program/
operator control.

Enhanced Select (ESEL) Function Block

The ESEL instruction (see Figure 11-36) lets you select one of as many as six inputs
or the highest, lowest, median, or average of the inputs and send the result to the
output. The SelectorMode input (see Figure 11-37) value determines whether the in-
struction will select the highest, lowest, median, or average of the inputs. In the exam-
ple shown in Figure 11-36, 4 is the input to the SelectorMode input so the average of
the input values will be output by the instruction. There are also inputs to determine
if the instruction is under program or operator control. This instruction is available in
function block and in ST.

278 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

e BB

& + 2330 i ™ ‘m gy
en = : ’
05 * ': s'scled :
. -
] Fal
S0 5 > - PesgOpes ID
2 n L
o - . »
e B 1) esde [3
&
-~ dy 1 ! flelesbetilsde
.
oot Swiedh ’ “u L, veliwch
L 3 ¥
P €l Fooghosgieqd
(] &t I el g

Figure 11-36 An ESEL instruction.

Value Description

0 Manual select
1 High select

2 Low select

3 Median select
4 Average select

Figure 11-37 Selector modes.

Switching between Program Control and Operator Control

The following list states how the ESEL instruction changes between program control and
operator control.

1. You can lock the instruction in operator control mode by leaving ProgOperReq
set.

2. You can lock the instruction in program control mode by leaving ProgProgReq
set while ProgOperReq is cleared.

CHAPTER 11—FUNCTION BLOCK DIAGRAM PROGRAMMING 279

Multiplex (MUX) Instruction

The MUX instruction can be used to select one of eight inputs to send to the output on
the basis of the selector input. On the basis of the selector value, the MUX instruction
sets Out equal to one of the eight inputs. The number of inputs can be reduced. An
example of the use of this might be a process where we have different potential tempera-
tures, depending on the product that needs to be produced.

Figure 11-38 shows the use of a MUX instruction to choose which one of eight
input values should be sent to the output. This MUX instruction selects between Inl,
In2, In3, In4, In5, In6, In7, and In8, on the basis of the selector. The instruction sets
Out = In, which becomes an input parameter for MUX_01. For example, if Select_
Value = 2 (value into the selector input), the instruction sets Out = Analog_Input2, 6.7
in this example.

(U

hpgicg e n, -

hrpisg Ea B ® .: -:. F e
1 Ay
Argisg s 2 e — v
1 - i

'
Aagleg b) > !
' -
Angleg s 4 * a:]
)
Analeg s 8 = =10
M _f‘
Angieg s @ > L] e
] -

s b 4 . . 4

Aried ba » o

)

v

¥

'

teletl Vaige ", =+

Figure 11-38 A MUX instruction.

ADD-ON INSTRUCTIONS

Add-On instructions are custom instructions you can create yourself. They are like
personalized instructions. Add-On instructions can be used to create new instruc-
tions for sets of commonly used logic. Add-On instructions are not necessarily
function block instructions. You develop the logic in your choice of logic. You can
also provide documentation for the instruction so that it appears to be a standard
instruction.

280

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

These are some benefits of Add-On instructions.

If there are algorithms that are used multiple times in the same project or in dif-
ferent projects, it may make sense to use the code inside an Add-On instruction
to make it modular and easier to reuse. It may also make the logic easier to under-
stand, by hiding some of the complexity behind the code.

Add-On instructions allow a programmer to reuse the work invested to develop
algorithms.

Add-On instructions can provide consistency between projects by reusing com-
monly used control algorithms.

Add-on instructions allow the programmer to put complicated algorithms inside
of an Add-On instruction, and then provide an easier-to-understand interface by
making only essential parameters visible.

The use of Add-On instructions reduces documentation development time by au-
tomatically generating instruction help.

The proprietary code the programmer develops can be put inside the Add-On
instruction and Source Protection can be used to prevent others from viewing or
changing the code. This can help keep the code proprietary. This is very important
for companies that manufacture and sell automation equipment.

An Add-On instruction can be used across multiple projects.

Once an Add-On instruction is defined in a project, it behaves like the standard
instructions already available in the RSLogix 5000 software. Add-On instructions
appear on the instruction toolbar and in the instruction browser.

Developing an Add-On Instruction

Note you must have at least RSLogix version 16 to develop Add-On instructions.

The General tab contains information from when an Add-On instruction is first cre-
ated. The General information tab can be used to update the information. Also note that
the description, revision, revision note, and vendor information is copied into the custom
help for the instruction. The programmer is responsible for defining how the revision
level is used and when it is updated. Revision levels are not automatically managed by the
software.

Parameters

The Parameters define the instruction interface and also how the instruction appears
when used in logic. The parameter order that you develop defines the order that
the parameters appear on the instruction. Figure 11-39 shows the Parameters input
screen.

CHAPTER 11—FUNCTION BLOCK DIAGRAM PROGRAMMING 281

SimD Thew Oupa |BOOL Decemyl i on. the dead i
Swigs kg | REAL 00 Fiow Enber the tag for
SmDeadhme gt REAL 00 Fiom Enter the dead e
SimTmeCoret |lpt | REAL 10/ Fiow | Erter the teme con
SmOups Ouput |REAL 00/ Fiow Outpnt vahun of th_
1 Dt |REAL[100) Floa Ertor an amayof 1

Figure 11-39 Parameters screen. (Courtesy of Rockwell Automation, Inc.)

Local Tags

Local Tags are hidden members and are not visible outside the instruction. They cannot
be referenced by other programs or routines. They are private to the instruction. This can
be very important. It can make the instruction appear to be simple and easy to under-
stand. It also may be of benefit to hide proprietary logic. Figure 11-40 shows the Local
Tags entry screen.

Figure 11-40 Local Tags screen. (Courtesy of Rockwell Automation, Inc.)

282 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Data Type

Parameters and Local Tags are used to define the data type that is used when executing
the instruction. The software builds the associated data type. The software orders the
members of the data type that correspond to the parameters in the order that the param-
eters are defined. Local Tags are added as hidden members.

Logic Routine

The Logic routine of the Add-On instruction defines the primary functionality of the in-
struction. It is the code that executes whenever the instruction is called. Figure 11-41
shows the interface of an Add-On instruction and its primary Logic routine which defines
what the instruction does.

Lavel Loop 101
Simylsted Level
bared on Valve Pos

LIC101_Sim
PtocSim .-l

Process Simylation (Desdtime >Lag)

00 00
Fon2 s ST

_— AT FY_S VRN P, O L& 2L 3§ MSeibaa

g Ty FamiAy T ap

oEeT o LbLe 01
[()] = | (80 al
Ceatmamy Leadlag fmg veds
o (1]
L L = L b L] = = | om]
Destbems el L3
Lhicmgutiody Tedd? metnmiag,

oc

| Cog_LagTime

Figure 11-41 A Logic routine for an Add-On instruction. (Courtesy of Rockwell Automation, Inc.)

CHAPTER 11—FUNCTION BLOCK DIAGRAM PROGRAMMING 283

Optional Scan Mode Routines

Scan mode routines can also be defined for Add-On instructions. Figure 11-42 shows the
Scan Modes configuration screen.

Figure 11-42 Scan Modes screen. (Courtesy of Rockwell Automation, Inc.)

Figure 11-43 shows the Change History entry screen. The Change History tab dis-
plays the creation and latest edit information that is tracked by the software. The By fields
are used to show who made the change on the basis of the Windows user name at the
time of the change.

Figure 11-43 Change History screen. (Courtesy of Rockwell Automation, Inc.)

284 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Help

Figure 11-44 shows the Help tab screen. The name, revision, description, and
parameter definitions are used to build the Help instruction. This is done auto-
matically. The Extended Description Text is used to provide additional Help
documentation for the instruction. The Instruction Help Preview shows how the
instruction will appear in the various languages, on the basis of parameters defined
as required or visible.

Doad Tone = 0's. These it no deed tee
Tiewe Conatant « 1.0 2. The nstuction a lag based on & 1 0 1 beme corstant

Figure 11-44 Help development screen. (Courtesy of Rockwell Automation, Inc.)

CHAPTER 11—FUNCTION BLOCK DIAGRAM PROGRAMMING 285

Available Languages

Add-On instruction routines have a choice of ladder diagram, FBD, or ST. Once the Add-
On instruction has been created, it can be called from any of the RSLogix 5000 languages.
An Add-On instruction written in one language can be used as an instruction through a
call in another language.

Creating an Add-On Instruction

Figure 11-45 shows part of the Project Explorer window. To create an Add-On instruc-
tion, select Add-On Instructions and then New Add-On Instruction.

=15 Motion Groups
(23 Ungrouped Axes

= &3 Data Types E@ New Add-On Instruction. ..

L Predefined B Copy CeriC
2 Trends a Paste Ctris-V
= &3 1JO Configuration

Figure 11-45 Screen to create a New Add-On Instruction. (Courtesy of Rockwell
Automation, Inc.)

After you choose New Add-On Instruction, the window shown in Figure 11-46 ap-
pears. You must enter a name for the new instruction. You may enter a description. Note
that some of the information on this screen will be used to automatically document this
instruction as well as develop the Help file instructions for this instruction. You must
choose the language that will be used. You may enter a Revision as well as text and a note.
You may also enter a name or information in the Vendor area. When you have finished,
select OK.

286 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Figure 11-46 Information screen for a New Add-On Instruction. (Courtesy of Rockwell
Automation, Inc.)

Next the logic can be developed. Choose the name of the instruction from the
Add-On Instructions list. In the example in Figure 11-47 there are four Add-On Instruc-

tions shown.
B -F
#* g Conveyor_Control

() Motor_Starter
* 0) Semdate_Feedback
@ () Seulation_DT_1st

Figure 11-47 Add-On Instructions portion of the Controller Organizer screen. (Courtesy of
Rockwell Automation, Inc.)

CHAPTER 11—FUNCTION BLOCK DIAGRAM PROGRAMMING 287

In Figure 11-48 an Add-On instruction named Motor_Starter was selected. To
develop the logic routine for the instruction, you would choose the Logic choice and
then develop the logic.

=5 Motor _Starter
Parameters and Local Tags

EnablelnF alse

Figure 11-48 Routines and tags under the Motor_Starter Add-On instruction. (Courtesy of
Rockwell Automation, Inc.)

Instructions can be stored so that they are easy to access when developing new appli-
cations. Source protection can also be applied to hide or protect proprietary code.

This chapter has only covered a small number of the available function block instruc-
tions. If you become comfortable with these, you will readily learn others that you need
to use. You can bet that there is an instruction or a combination of instructions that will
solve any application need you have. If it is a recurring need, you can even create your
own Add-On instruction for future use.

QUESTIONS

1. True or False: Function block programming is one of the languages that IEC 61131-3
specifies.

What does the acronym IREF stand for?

What does the acronym OREF stand for?

Can an IREF be a tag? A number?

Can an OREF be a tag?

What does the acronym ICON stand for?

What does the acronym OCON stand for?

What is the difference between an OREF and an OCON?
What are ICONs and OCONS used for?

What is the Assume Data Available indicator used for?

. What is a sheet in a function block routine?

© P® o Otk L

—_ = =
O = O

. What are two ways you could get information from an instruction on one sheet to an
instruction on another sheet?

. What is an Add-On instruction?

—_
(o8]

288 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

14. List three advantages of Add-On instructions.

15. Thoroughly explain the logic below. Make sure you explain the types of inputs and
outputs to each instruction as well as what the logic does.

ADD_O1
e
hgdy
0 00
™ T
Cumest_0 —] towmcen bet—c Tos)
agdoh_I pay G rurcald A2
MU0t
bt |
:_uu 00 . N
-0 Goeeh Dast et Mawastosy_Vatee |
RER=T S
EED -
-

16. Thoroughly explain each instruction and the logic below. Make sure you explain
the types of inputs and outputs to each instruction as well as what the logic
does.

DaND_01
hand =
Picieps dpd

0 L] DD 02
a1 - + Ot i I
fap 2 o [
e~y o | Dostess Ang .

L it MD——@

EEE

s =
Bosinpn Qo

0
Inp_4 0] =t 02 D
np 5 Ey

CHAPTER 11—FUNCTION BLOCK DIAGRAM PROGRAMMING 289

17. Thoroughly explain each instruction and the logic below. Make sure you explain the
types of inputs and outputs to each instruction as well as what the logic does.

TONR_O1
T OsR _-_|
Timas Oa Daliy st Rasetd

Tmetntte acc o Tme)
40000 I PR DN D= »a2

um |

@
L oot

*C [TR]

18. Thoroughly explain each instruction and the logic below. Make sure you explain the
types of inputs and outputs to each instruction as well as what the logic does.

Temp_(hoicw
e o
L

00
o oapta)

HHEEHE

<l Betectss

290 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

19. Thoroughly explain each instruction and the logic below. Make sure you explain the
types of inputs and outputs to each instruction as well as what the logic does.

“im = =1 LT
8 gl £ -
“ M g~

Al U g

20. Write a function block routine for the following application. You may do it on paper

or on a controller.

This is a simple heat treat machine application. The operator places a part in a fix-
ture, then pushes the start switch. An inductive heating coil heats the part rapidly to
1500 degrees Fahrenheit. When the temperature reaches 1500, turn the coil off and
open the quench valve which will spray water on the part for 10 seconds to complete
the heat treatment (quench). The operator then removes the part and the sequence
can begin again. Note there must be a part present or the sequence should not start.
Note: you may want to use a small ladder diagram program for the start/stop logic. It

will simplify the task.

1/0 Type Description

Part_Present_ Discrete Sensor used to sense a part in the fixture

Sensor

Temp_Sensor Analog Assume this sensor outputs 0-2000
degrees Fahrenheit. To keep it easy
assume that the sensor is analog and
will output the number 1500 when the
temperature reaches 1500

Start_Switch Discrete Momentary normally open switch

Heating_Coil Discrete Discrete output that turns coil on

Quench_Valve Discrete Discrete output that turns quench valve

on

CHAPTER

1§

Industrial Communications

OBJECTIVES

On completion of this chapter the reader will be able to:

= Describe the typical levels of an industrial network.

» Explain terms such as serial, synchronous, asynchronous, multi-drop, full duplex,
half duplex, deterministic, and so on.

= Describe the typical use of DeviceNet, ControlNet, and SERCOS.
» Describe token passing and CSMA/CD.

INTRODUCTION

There are three general categories of industrial networks: device networks, control net-
works, and information networks. Figure 12-1 shows an illustration of the three levels.

The device level is the lowest level. The device-level network is used with indus-
trial devices such as sensors, switches, safety devices, drives, motors, valves, and so on.
There are many industrial device-level networks available. DeviceNet is one of the more
common device-level networks.

The control level would be the networks that industrial controllers are on. This level
would include the PLCs, operator I/0 devices, drives, robot controllers, vision systems,
and so on. Communication on the control level includes sharing I/O and program data
between controllers. In ControlLogix systems this would include sharing producer/
consumer data between controllers as well as special purpose cards such as motion
controllers communicating over specialized networks like SERCOS to drives. Commu-
nication at the control level can often affect the safety of the system and personnel.
ControlNet is one of the more popular protocols at the control level.

292 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

- 4 Programmable
3

Information Level

Device Level

: : § {
PLC Openlcr
Block VO romsar Mo Motor Interface
Vo Drve Starter

Figure 12-1 Levels of industrial networks. (Courtesy of Rockwell Automation, Inc.)

The information level typically is composed of the company’s business networks and
computers. These would include financial, sales, engineering, management information
systems, Internet, intranet, email, scheduling, and so on. These systems and computers
typically utilize an Ethernet network. The rest of the chapter will examine the types of
communication networks from the device level up.

SERIAL COMMUNICATIONS

Serial communications is a term that means that communication takes place in a linear
fashion. In serial communications a message is broken into individual characters and
each character sent one bit at a time. A coding system named ASCII is typically used.
ASCII uses a unique binary number to represent every letter, number, and special char-
acter. There is a 7-bit ASCII and an 8-bit extended ASCII coding system. A 7-bit ASCII
has 128 possible different letters, numbers, and special characters. An 8-bit ASCII has

CHAPTER 12—INDUSTRIAL COMMUNICATIONS 293

256 available. In serial communications each character is sent as its ASCII equivalent. In
7-bit ASCII the letter A is coded to be 1000001 (see Figure 12-2).

Serial communications can be synchronous or asynchronous. In the asynchronous
communications mode individual characters are sent one at a time. Each character that is
sent is delineated by a start bit and a stop bit. Asynchronous communications are typically
used for low-speed simple data transmission.

When devices communicate, the sender and receiver must have a way to extract in-
dividual characters or blocks (frames) from the whole message. Imagine the message as
being a very long list of 1s and Os (bits). The receiving device has to be able to break the
bits into logical groupings to make the message understandable.

Stop Bit
Character (A) v

<+— 1 1000001 1 1
A

'y
Start Bit Parity Bit

Figure 12-2 Asynchronous mode transmitting the letter A.

When a character is transmitted in asynchronous communications more than 7 bits
are used. Extra bits are added before each character transmission so that the receiving
device is warned that a message is coming and was not corrupted and after so that the
receiver knows that the character has been sent.

The first bit that is sent is called a start bit (see Figure 12-3). This bit alerts the re-
ceiver that a message is about to be sent. In effect it tells the receiver to pay attention.
The next 7 bits (8 if 8-bit ASCII is used) are the ASCII equivalent of the character that is
being sent. The next bit is used for parity. Parity is used to check the received message for
errors. There are several choices for the way that parity is used for checking. The parity
choices include odd or even, mark or space, or none.

Start Bit Data Bits Parity Bit Stop Bit

1 bit 7 or 8 bits 1 bit, can be odd, even, mark, space, or none 1, 1.5, or 2 bits

Figure 12-3 How a typical ASCII character is transmitted.

Study the example shown in Figure 12-3. This example uses odd parity. There is
an even number of 1s in the character A (2), so the parity bit is set to 1 to make the
total number of 1s odd. If the character had an odd number of 1s, the parity bit would
be 0. The receiving device uses the parity bit as a check to see if the character may
have been corrupted during transmission. The receiving device counts the number of
Is in the character and checks the parity bit. If the total number of 1s plus the parity

294

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

bit is odd, the receiver assumes that the message was received accurately. Although
this method is somewhat crude, it is quite effective. Note that it is not perfect; two or
more bits could change state and the parity bit could still be correct but the message
would be wrong.

Synchronous Communications

Synchronous communications are much faster than asynchronous communications.
They synchronize the sending device and receiving device with a signal or a clock that
is encoded into the data stream. The sending device and the receiving device synchro-
nize with each other before any data is sent. Synchronous communications utilize a spe-
cial bit-transition pattern in the signal that maintains the timing between sender and
receiver. Synchronous communications are used in the more complex communications
protocols.

RS-232 Communications

RS-232 is the most common asynchronous serial communications mode. The RS in
the standard’s name means recommended standard. The RS-232 was designed to use a
25-pin plug. It specifies a function for each of the 25 pins. The standard did not require
that any of the pins must be used. Some devices use only three pins (see Figure 12-4).
Some devices utilize more than three pins to do electric handshaking. Handshaking en-
sures the devices coordinate their communications.

Handshaking is cooperative. The first device alerts the other device that it has a mes-
sage it would like to send. It accomplishes this by setting pin 4 high. Pin 4 is the request
to send (RTS) pin. The receiving device sees the RTS pin high, and if it is ready to receive
a message, it sets the clear to send (CTS) pin high. The first device then knows that the
other device is ready to receive a message. Some devices have the ability to electrically
handshake; some do not.

2 Send
.3 Receive <
7 Ground (Common)

Figure 12-4 Simple RS-232 wiring scheme showing the simplest of RS-232 connections.

RS-422 and RS-423

RS-422 and RS-423 were designed to improve on the weaknesses of RS-232. RS-422
and RS-423 permit longer-distance and higher-communication speeds. RS-422 uses a
balanced serial method of communications. RS-232 has only one common wire, so the

CHAPTER 12—INDUSTRIAL COMMUNICATIONS 295

RS-485

transmit and receive lines must share the same wire. Sharing a common wire can accentuate
noise problems. RS-422 has separate common wires for the transmit and receive lines.
Having a separate wire for transmit and receive makes the method more noise immune.
The balanced mode is less susceptible to external interference and exhibits lower cross
talk between the transmitted and received signals. Cross talk is defined as being the
bleeding of one signal onto another.

Noise problems reduce the potential speed and distance of communications. Com-
munications are always a trade-off between speed and distance because of noise. RS-422
has much higher speed and longer distance than RS-232 because the balanced mode is
used. RS-422 features speeds of 10 Mb for distances of over 4000 feet. RS-232 is only
9600 baud and 50 feet.

Termination

As speed and length increase, the reflection of the signal can become a factor. Resistors
can be added to each end of the cable to terminate the line. The termination resistors are
used to match the impedance of the device to the impedance of the cable. When they
are matched, the signal won't reflect back into the line. For RS-422, a 100-ohm resistor is
used on both ends of the cable.

RS-485 is a derivation of the RS-422 standard. The standard is officially now known as
EIA/TIA-485. It is commonly still referred to as RS-485 however.

RS-485 is a multidrop protocol. Multidrop means that multiple devices can be
connected on the same network. The standard limits the number of stations to 32. This
allows for up to 32 stations with transmission and reception capability, or 1 transmit-
ter and up to 31 receiving stations. The maximum distance for RS-485 is 1200 meters.
The total number of devices and maximum distance can be extended if repeaters are
used.

RS-485 uses twisted pair communications wiring. Twisted pair wiring is a pair of wires
that are twisted around each other. Having the two wires twisted around each other re-
duces the possibility of noise interference changing the message. An RS-485 network can
use two sets of twisted wire or one set. RS-485 can be half duplex or full duplex. If two
sets of twisted wire are used, the communications can be full duplex. Full duplex means
that simultaneous, two-way conversation can be done.

Full-duplex mode allows communication simultaneously in both directions. Full du-
plex is like a two-lane highway with one lane for each direction. Cars can travel on each
road in different directions at the same time.

A half-duplex system allows communication in both directions, but in only one direc-
tion at a time. A walkie-talkie is a good example of a half-duplex system. If a person wants
to talk, he or she hit the call button and then talk. When done, he or she says the keyword
Over and waits for the receiver to respond. Only one person can talk over the two walkie-
talkies at a time.

296

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Another example of half duplex is road construction. When there is road construc-
tion, there are often workers with flags at each end of the construction. They only allow
traffic flow in one direction at a time.

A ground wire is also used in RS-485 so RS-485 wiring is typically involves three or
five wires. The ends of the RS-485 communications lines are terminated with resistors.

DF1 PROTOCOL

DF1 can be used to talk with Rockwell Automation PLCs from computers or other de-
vices with a serial communications port.

DF1 can be used in a peer-to-peer mode or in a main-sub mode. Peer-to-peer com-
munication is a mode in which any device may talk to any other device. They are all
peers. Peer-to-peer mode uses full-duplex protocol. The main-sub mode is a method of
communication where the main device controls the communication and the other de-
vices (subs) simply react to commands that they receive from the main device. The main
device can communicate with several subdevices. Up to 255 devices can communicate in
a DF1 main-sub mode. But only one can be the main. The subs do not speak unless the
main requests information.

The main device is used continuously to poll the sub devices. Essentially they are
polled to see if they have any data to transmit to the main. If the sub device has a message
to transmit, it sends it. The main device receives the message and then polls the next sub-
device, and so on. The main device maintains a list of active sub devices. If a sub device
does not respond to a poll command from the main, the main removes it from the list of
active sub devices. The main will repoll the sub device at a later time to see if it is active
again. The main-sub mode of communication uses the half-duplex protocol.

MODBUS

Modbus is one of the oldest field buses. Modicon developed the standard in 1978. It
was developed to exchange data between PLCs and other devices. Modbus is based on
a serial master-slave system (RS-232/485). Modbus can utilize simple or peer-to-peer
communications. Modbus protocols include ASCII/RTU, Modbus Plus, and Modbus/
TCP. Modbus/TCP is used to communicate on an Ethernet. The ASCII mode and
Remote Terminal Unit (RTU) mode are similar. RTU has a few differences in the
format of the frame and it can transmit more data in the same amount of time than
ASCII. The maximum transmission distance for ASCII/RTU modes is 350 meters.
Five wires are used.

ASCII and RTU modes use a master-slave mode. Only the master device can
initiate communication. The master can communicate with individual slave units
or with all slave units simultaneously. The latter can be called a broadcast message. Slave
devices can only respond to the master device’s requests. Slaves respond by transmitting
the requested data or by performing the requested operation.

CHAPTER 12—INDUSTRIAL COMMUNICATIONS 297

In Modbus ASCII/RTU mode, the frame of the message is

The device address field
The function code field
The data bytes field
The error-check field

This frame format is used by both the master and slaves.

Address Field

There are two characters in the address field. Slave device addresses can be between
0 and 247. If the master sends a message, it puts the slave device’s address in this
field. When a slave responds, it puts its own address in this field so that the master
knows which slave replied. If the master uses 0 as the address, all slaves react to the
message. That is, 0 is used as a broadcast address for the master to talk to all slave
devices.

Function Code Field

The function code has two characters that tell the slave devices what function to perform,
such as turning outputs on, reading the status of inputs, reading the values of memory
addresses, writing values to memory, and so on.

The valid numbers for function codes are 1 to 255. Some of the functions are univer-
sal for all equipment. Some of the function codes are specific to Modicon. Some of the
function codes are reserved for future use.

Data Field

The data field has information that the slave devices need to process the command from
the master. For example, if a read function were sent, the data field would tell the slave
which input statuses should be read. When the slave sends its response, it puts the data
that was requested in the data field. If there was an error, the slave sends an error code in

the data field.

Error Check Field

The error check field in ASCII mode contains the result of the longitudinal redundancy
check (LRC) calculation. This calculation is an arithmetic algorithm that is performed on
the message to be sure the message that was received is exactly the same as the message
that was sent. RTU mode uses a cyclical redundancy check (CRC). A CRC is an arithme-
tic algorithm that is performed on the message to be sure the message that was received
is exactly the same as the message that was sent.

The last portion of a Modbus ASCII message is the carriage return and line feed
characters. When the receiving device receives these two characters, it is the end of the
message.

298 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Message Formats for Modbus ASCII and RTU

Figures 12-5 and 12-6 show the communication formats for ASCII and RTU
communication.

Modbus ASCII Message Format

Function Error Check
Start Field Field Data Field Field
1 character, a 2 characters 2 characters X characters (dependant 2 characters 2 characters,
colon (:) character on message length) CR and LF

Figure 12-5 ASCIl message format.

Modbus RTU Message Format

Address Function Error Check
Start Field Field Field Data Field Field
4-character 8 bits 8 bits N * 8 bits (dependant on 16 bits 4-character
delay time message length N) delay time

Figure 12-6 RTU message format.

Modbus Plus

Modbus Plus makes peer-to-peer communication possible. With Modbus Plus any de-
vice can initiate communication with any other device. Although any device can initiate
communication, on a message level it is still master-slave. The device that initiates com-
munication is the master and the device it wants to communicate with responds like a
slave. Modbus Plus can interface with up to 32 devices up to 1500 meters. A total of
three repeaters can be used to extend the distance to 6000 meters and the number of
devices to 64.

DATA HIGHWAY PLUS

Rockwell Automation’s Data Highway Plus (DH+) is a proprietary protocol. A DH+
network can connect up to 64 devices. DH+ is a token-passing bus network. A bus can
be thought of as a network with a long backbone cable. The backbone cable is often
called the trunk line. Devices are simply connected to the trunk cable.

CHAPTER 12—INDUSTRIAL COMMUNICATIONS 299

Token Passing

Devices must gain access to the network to be able to communicate. Token passing is
one of the access methods. In the token-passing access method, only the device that has
control of the token can talk. The token is passed from device to device until one of them
wants to talk. The device then takes control of the token and is free to talk. The token is
simply a bit pattern in the message.

A device that would like to gain access waits for a free token. When a free token ar-
rives, the device that would like to talk sets the token busy bit, adds the information field,
adds the actual message to be sent, and adds a trailer packet. The header packet has the
address of the device that the message is being sent to.

As the message moves through the network, every device checks the address in the
header to see if it is being talked to. If not, it ignores the message and sends it on.

The message arrives at the addressed device, and the device copies the message.
The receiving device sets bits in the trailer field to show that the message was received.
The receiving device regenerates the message and sends it back out on the network. The
device that originally sent the message receives the message back and notes that the
message was received. The device then frees up the token bit and sends it out for other
devices to use.

With token passing, access times for a device are predictable. This can be very impor-
tant in a manufacturing environment. The access times in a token-passing access method
are called deterministic because actual access times can be calculated on the basis of the
actual bus and nodes.

In general in a DH+ network, a single device cannot keep the token more than 38 ms.
A device can keep the token for up to 100 ms in special circumstances.

WIRELESS COMMUNICATION

The Wireless Ethernet Compatibility Alliance (WECA) was formed in 1999 by Aironet
(now Cisco), 3Com, Lucent Technologies (now Agere), Harris Semiconductor (now
Intersil), Nokia, and Symbol Technologies. It was formed to certify interoperability of
wireless local area network products based on the IEEE 802.11 specifications. It was
renamed the Wi-Fi Alliance in October 2002. Wi-Fi product certification began in March
2000. Equipment passing these interoperability tests can use the Wi-Fi logo.

IEEE 802.11 is a standard for wireless networking; 802.11b is the most common.
The 802.11b can operate at speeds of up to 11 Mb/second. The 802.11¢g can operate
at speeds up to 54 Mb/second. It is backward compatible with the original §02.11b
standard.

Wireless communications are attractive because wiring does not have to be run be-
tween devices. Running wire is labor intensive and expensive. Wired devices are difficult
and expensive to move once they have been installed. Wire is also susceptible to electrical
noise. Wireless local area networks (WLANs) are finding a home everywhere from the
factory floor to the office.

There are four main types of network topologies available.

300 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Peer to Peer

Each device communicates directly with another device. This is typically used for a small
and simple network.

Multipoint to Point

Remote devices communicate their data to a central location. This is often used for data
collection applications.

Point to Multipoint

One device talks to many devices simultaneously. The master device (point) broadcasts a
message and all devices receive it.

Mesh

In a mesh network, each device passes the message to its neighboring device until it
reaches the destination device. If a neighboring device is damaged, another neighbor
is used.

Spread Spectrum Technology

Spread Spectrum Technology (SST) is used for wireless communications. SST was devel-
oped by the U.S. military during World War II to prevent jamming of radio signals. It also
helped make them harder to intercept.

In SST the bandwidth of the transmitted signal is much wider than the bandwidth
of the information. In contrast, a radio station uses a narrow bandwidth for transmission.
The transmitted signals utilize virtually all of the bandwidth.

In spread spectrum communications the message is modulated across a wide band-
width. SST spreads data transmission over many different frequencies. This ensures that
interference on a single frequency cannot prevent the data from reaching its destination.
A special code determines the transmitted bandwidth. Authorized receivers use the code
to extract the message from the signal. The transmission looks like noise to unauthorized
receivers. This makes SST very noise immune.

The Federal Communications Commission (FCC) dedicated three frequency bands
for commercial use: 900 MHz, 2.4 GHz, and 5.7 GHz. There is very little industrial elec-
trical noise in these frequencies.

DEVICE-LEVEL NETWORKS

Device-level networks are sometimes called field buses or industrial buses. Industrial
networks create standards to allow different-brand field devices to communicate and be
used interchangeably no matter who manufactured them.

CHAPTER 12—INDUSTRIAL COMMUNICATIONS 301

Networks minimize the amount of wiring that needs to be done. Imagine a large sys-
tem that has hundreds of I/Os and no device network. Now imagine the time and expense
of wiring each and every I/O device back to the controller. This would be hundreds of
wires and might involve long runs of wire. Conduit has to be fabricated and mounted for
the wires that need to be run. If an industrial device bus had been used, only a single
communications cable would have to be run. The cable would be the trunk line (or bus),
and all devices could then connect directly to the bus. In many cases they would just be
screwed onto connectors on the trunk line. The cabling system often eliminates the need
for conduit or cable tray also. Multiple devices can even share one connection with the
bus. I/O blocks are available that allow multiple I/O points to share one connection point
to the bus.

Field bus devices gain a cost advantage when one considers the labor cost of in-
stallation, maintenance, and troubleshooting. The cost benefit received from using
distributed I/0O is really in the labor saved during installation and startup. There is also
a material savings when one considers all the wire that does not have to be run. There
is a tremendous savings in labor because only a fraction of the number of connections
needs to be made and only a fraction of the wire needs to be run. A field bus system is
also easier to troubleshoot. If a problem occurs, only one twisted pair cable needs to
be checked. A conventional system might require the technician to sort out hundreds
of wires.

Field Devices

Drives, sensors, valves, actuators, and starters are examples of I/Os that are called field
devices. Field devices can be digital or analog.

DEVICENET

DeviceNet is intended to be a low-cost method to connect devices such as sensors,
switches, valves, bar-code readers, drives, operator display panels, and so on, to a simple
network. Figure 12-7 shows an example of a DeviceNet network. The DeviceNet stan-
dard is based on the CAN chip. The CAN chip is a smart communications chip. It is a
receiver/transmitter and has powerful diagnostic capabilities.

Rockwell Automation used the CAN chip when it developed DeviceNet in 1993.
Any manufacturer can participate in the Open DeviceNet Vendor Association Inc.
(ODVA, www.odva.org). DeviceNet is an open network standard. The standard is not
proprietary. It is open to any manufacturer. ODVA is an independent organization
that manages the DeviceNet specification. DeviceNet is a broadcast-based communi-
cations protocol.

By using devices that adhere to the standard, you can interchange devices from dif-
ferent manufacturers. DeviceNet allows devices from various manufacturers to be inter-
changed and makes interconnectivity of more complex devices possible.

www.odva.org

302 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

:[H:l:D Enclosure
T
=
=

FIRIWNIK
ANzl

E

DeviceNet
Power
Supply

Open
Style
Device

ol

Figure 12-7 A DeviceNet network.

The user can choose master-slave, multimaster, peer-to-peer, or a combination con-
figuration depending on device capability and application requirements. Higher-priority
data gets the right-of-way. A DeviceNET network may have up to 64 node addresses.
Each node can support many I/Os.

DeviceNet supports strobed, polled, cyclic, change-of-state, and application-
triggered data communications.

Strobed
In strobed communications the DeviceNet scanner periodically strobes all devices for
their status.

Polled

In polled communications the scanner polls individual devices for their status.

Change of State

Change of state means that a device reports only when the data changes. To be sure
the scanner knows that the node is still alive and active, DeviceNet provides an adjust-
able, background heartbeat rate. Devices send data whenever their data changes or the

CHAPTER 12—INDUSTRIAL COMMUNICATIONS 303

heartbeat timer expires. This keeps the connection alive and lets the scanner know that
the node is still alive and active.

Cyclic Transmission

Cyclic transmission can be used to reduce unnecessary traffic on a network. Devices can
be set up to report their data on a regular basis that is sufficient to monitor their change
rather than reporting too often and adding to the traffic on the network.

Figure 12-8 shows a simple example of a DeviceNet system. Note that there is only
one cable running to the PLC. Note also the trunk line that all devices plug into. The
PLC has a scanning module that acts as the master of the network.

500 meters maximum and up to 62 nodes

Figure 12-8 A DeviceNet system. Note that there is only one cable running to the scanner
for all of the I/Os.

DeviceNet Components

Wiring

Figure 12-9 shows the typical topology for a DeviceNet cable system. The trunk line is
the backbone of the system. It is the one cable that all devices attach to. In DeviceNet
terminology a device that has an address is called a node. There are two types of wire,
thick and thin. There is also flat cable, which is shown in Figure 12-7. Thick wire is usu-
ally used for the trunk line. The wire that connects devices to the trunk lines is called a
drop line. Drop lines usually utilize thin cable. The most common way in which drop
lines are connected to trunk lines is through a tap, or T. The use of terminal blocks is also
acceptable and common.

Figure 12-9 shows a simple, generic network. Note the trunk line. Thick cable is
capable of handing 8 amperes [although National Electric Code (NEC) only allows
4 amperes]. Thin cable is normally used for drop lines. Thin cable can handle up to
3 amperes of power. Both thick and thin cable have power and communication lines.
This is important because many devices can be powered directly from the DeviceNet

304 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

thick or thin cable. Two wires supply 24 volts to the network. Two other wires are used
for communication. You should also notice in Figure 12-9 that the ends of the trunk
line must be terminated with 121-ohm resistors. Terminating resistors should never be
used on drop lines.

The DeviceNet cable system uses a trunk/drop line topology.

s trUNK |iNE
——drop line
|:[device or node

TR = terminating resistor 41826

Figure 12-9 DeviceNet topology. (Courtesy of Rockwell Automation, Inc.)

DeviceNet is quite flexible in wiring topology. Figure 12-9 shows several possible
topologies for wiring. Devices are shown as squares. The left-most example shows a tree-
type structure. Next there is a single node attached by a drop line to the trunk line. Then
we see a bus topology with three devices attached through a drop line to the trunk line.
Next we see a daisy-chain topology. Daisy chain means that a communication line comes
into one device and then another leaves the device to connect to the next device in line,
and so on. This called daisy chaining. Then there is a more complex tree topology. The
last is a single device attached by a drop line to the trunk line.

There is a maximum allowable drop line length of 20 feet. There is also a maximum
cumulative drop line length. The maximum length varies by the network speed. The
slower the speed, the longer the line length allowed. The faster the network, the shorter
the cumulative line length that is allowed. The maximum drop line length is based on the
cumulative drop line length. Figure 12-10 shows the maximum cumulative line length for
the three network speeds allowed in a DeviceNet system. Note that the higher the speed
that is used, the lower the maximum line length.

CHAPTER 12—INDUSTRIAL COMMUNICATIONS 305

Network Speed ‘ Maximum Cumulative Drop Line Length
125k bits/s 512 feet
250k bits/s 256 feet
500k bits/s 128 feet

Figure 12-10 Allowable line lengths for DeviceNet network speeds.

The most important device in a DeviceNet network is the scanner. The scanner acts
as an interface between the PLC CPU and the inputs and outputs in the DeviceNet sys-
tem. When the programmer configures a DeviceNet system he/she creates a scanlist in
the scanner. The scanlist identifies which devices are included in the system and must be
scanned by the scanner. The scanner reads inputs and writes to outputs in the system.
The scanner is also to monitor the devices for faults. The scanner can download configu-
ration data to each device. The scanner may also be equipped with a readout to help with
troubleshooting the network. A Rockwell Automation scanner will flash a number that
represents the error code and the number of the node that has the problem along with
other diagnostic information.

Flex I/0 uses one node address to connect many I/O devices. The I/O that is con-
nected to the modules does not have to be DeviceNet capable. Any digital or analog 1/0
can be connected to the modules. Flex I/O modules are available for multiple inputs or
outputs in digital or analog. Up to eight modules can be plugged together. This means that
up to 128 discrete devices or 64 analog channels can be connected to a DeviceNet network
using a FLEX I/O system. All of these devices can be connected and only use one node
address. The modules are then attached to a DeviceNet communications module that is
connected to the network. Flex I/O can also be used to connect non-DeviceNet devices to a
DeviceNet network. Flex I/O and a DeviceNet bus is also useful to connect a PLC to de-
vices that may be concentrated in one area of a machine a long way from the controller.

Communications Flow in a DeviceNet Network

The scanner module coordinates and controls all of the communications in a DeviceNet
system. The data that a scanner receives or transmits is stored in its memory. The CPU
(processor) of the CLX can utilize this information from the scanner. The CPU can re-
ceive or transmit information in two modes: I/O and explicit. I/O messaging is used for
time-critical, control-oriented data exchange. I/O messaging makes the communications
very transparent for the user. I/O is simply addressed as it would be in any card after the
addressing is set up in the scanner.

Explicit messaging enables the CPU to transmit and receive between 1 and 26 words.
Explicit messaging is typically used to transmit and receive information for a device that
requires or produces more data than a simple input or output. An example that might
utilize explicit messaging would be a drive.

The logic in the PLC would determine speeds, acceleration/deceleration, and so on. The
PLC would use explicit messaging to communicate this information to the scanner module.

306 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

The scanner then transmits the message to the drive as a block of information. The PLC
can also use explicit messaging to request the scanner to get information from the drive.
The DeviceNet scanner then requests the information from the drive and makes it available
to the PLC.

The DeviceNet scanner handles all communications with devices (nodes) and makes
the information available to the CPU. In a Rockwell Automation system, explicit messag-
ing is initiated by an instruction in the PLC logic. Reads and writes from the CLX utilize
the Message (MSG) instruction. These reads and writes are only performed when they
are called by the PLC logic. The programmer should be careful to only make these calls
when they are needed. They should not be called every scan as they consume significant
network bandwidth.

Troubleshooting

One of the greatest strengths of DeviceNet is the troubleshooting information that
is available on the alphanumeric display on the scanner module. The ControlLogix
DeviceNet scanner module displays alphanumeric codes that provide diagnostic informa-
tion. The alphanumeric display on the module flashes the codes at approximately 1-sec-
ond intervals. Under normal circumstances, the display for RUN toggles between the
node address of the scanner and the mode of the 1756-DNB scanner module. In the
example below the scanner is node 1 and it is in the run mode.

A#01

RUN

If there is a problem, the display shows the node number of the problem node, then
the error code. The display toggles through these elements until the error is corrected.
An example is shown below. The scanner is node 1 and it is in the run mode. The next two

lines show that node number 33 has an error code. Error 72 means that the node stopped
communicating.

A#01
RUN
N#33
E#72

CONTROL-LEVEL COMMUNICATIONS

Communications at the control level take place between control-type devices and large
racks of remote I/Os. Control devices include PLCs, robots, CNC controllers, and so on.

SERCOS

SERCOS stands for Serial Real-Time Communications System. It is a digital control bus
that is used to connect motion controllers, drives, and I/Os for motion control applica-
tions such as numerically controlled machines. It is very widely used in motion control

CHAPTER 12—INDUSTRIAL COMMUNICATIONS 307

applications. It does not fit neatly into the device level or the controller level of communi-
cations. It kind of straddles both.

The SERCOS standard makes it possible to use devices from various manufactur-
ers. The standard specifies format for parameters, data, commands, and feedback that
are normally communicated between controllers and devices. The devices are typically
motion related.

SERCOS I'was introduced in 1987. It could communicate at speeds of 2 to 4 Mb/second.
The second generation SERCOS II replaced SERCOS T in 1999. It can operate at speeds of
2,4, 8, and 16 Mb/second. SERCOS II can connect up to 254 devices to a control device us-
ing a ring topology. A ring consists of one master and multiple slaves that are daisy chained on
the ring. Fiber optics are used for the communications medium.

SERCOS III was introduced in 2005. SERCOS III uses the basic elements of previ-
ous SERCOS standards, thus maintaining backward compatibility. SERCOS III uses In-
dustrial Ethernet to transmit data at speeds of 100 Mb/second. The standard combined the
low cost and high bandwidth of Ethernet with the deterministic performance of SERCOS.
Ethernet is normally not deterministic. SERCOS III adds a real-time, collision-free chan-
nel that runs in parallel with an optional non-real-time channel. The non-real-time channel
is used in Ethernet environments. SERCOS III uses Industrial Ethernet physical media
instead of fiber. SERCOS III retains the ring configuration and allows multiple rings.

SERCOS III can connect up to 510 devices. In SERCOS IIT the servoloops are nor-
mally closed in the drive, not the controller. This reduces the load on the controller and
enables more devices to be connected.

SERCOS III allows hot plugging of devices in the ring or at the end of a line during
operation. Computers or devices using standard Ethernet can be connected to unused
version III ports to communicate with devices. This is very helpful for setup and trouble-
shooting activities. SERCOS IIT is not supported by Rockwell.

ControlNet

There is a need for standardization of control-level communications so that control equip-
ment from various manufacturers can communicate. ControlNet is one of those stan-
dards. ControlNet is a high-speed, deterministic network developed by Allen-Bradley for
the transmission of critical automation and control information. ControlNet was origi-
nally developed by Allen-Bradley in 1995. It was proprietary but was then released to the
general public under IEC-61158.

ControlNet is deterministic. It has very high throughput, 5 Mb/second for I/Os, PLC
interlocking, peer-to-peer messaging, and programming. A ControlNet network can per-
form multiple functions. Multiple PLCs, human/machine interfaces, network access by
a PC for programming, and troubleshooting from any node can all be performed on the
network. The capability of ControlNet to perform all these tasks can reduce the need for
multiple networks for integration.

A ControlNet network can be extended up to 1000 meters with two devices on
it or up to 250 meters with 48 devices. If repeaters are used it can be extended it to
5 kilometers and handle 99 devices. If fiber-optic cable is used, the distance can be up to
30 kilometers.

308 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

ControlNet is compatible with Rockwell Automation PLCs, I/Os, and software. Con-
trolNet supports bus, star, or tree topologies. It utilizes RG6-U cable, which is nearly
identical to cable television cable but has four shields as opposed to cable TV cable’s two
shields. This means that cable and connectors are all easy to obtain and very reasonable in
price. ControlNet also has a dual-media option (see Figure 12-11). This means that two
separate cables can be installed to guard against failures such as cut cables, loose connec-
tors, or noise. The figure also shows some of the types of computers and controllers that
can be integrated as well as the wiring.

muil 5;-|Ers [
Q Trunk Cable B = T

Node

To use redundant media, all nodes must support redundant media. 43508

Figure 12-11 Redundant cabling. (Courtesy of Rockwell Automation, Inc.)

A device that can link different types of communications protocols so all can com-
municate with each other is called a gateway. Imagine a box that could do control or act
as a communications gateway or do both simultaneously. ControlLogix (CL) is a modu-
lar platform for multiple types of control and communications. As a controller, the user
can utilize a CL system for sequential, motion control, and process control in any com-
bination. As a communications gateway, CL also enables multiple computers, PLCs,
networks, and I/O communications to be integrated.

One of the largest advantages of ControlLogix is its capability to be used as a com-
munications gateway to all of these various levels of communications and various net-
work protocols. There are several communications modules that are available, including
EthernetIP, ControlNet, DeviceNet, Data Highway Plus (DH+), remote 1/O, Fieldbus,
and serial communications modules.

Maximum speed of a ControlNet network is 5Mb/second, which is significantly
slower than Ethernet. It is quite fast for a deterministic network, however. It achieves the
fast throughput because it is optimized for control of I/O and is scheduled.

CHAPTER 12—INDUSTRIAL COMMUNICATIONS 309

Every device is assured a turn to communicate on the network every 2 to 100 ms.
The network update time (NUT) is user selectable from 2 to 100 ms. The NUT has
three components: scheduled times, unscheduled time, and guardband. Each device
on the network reserves scheduled time in advance when it is configured. If we add
all of the device scheduled times, the sum equals the total schedule time for the NUT.
Whatever time is leftover in the NUT is then used for unscheduled time transmission
and guardband data.

Unscheduled time is not reserved in advance by devices. It is used as needed until time
expires and the guardband is created. Figure 12-12 shows the NUT communications cycle.

Scheduled Time Unscheduled Time Guardband —»
Scheduled Time Unscheduled Time Guardband —»
Repeat

Figure 12-12 The NUT cycle.

Within the scheduled time slot, each device is allowed to transmit data if it has
the token. The first logical device receives the token; if it has data to send, it sends
it and then passes the token to the next logical device. That device then sends data
if it needs to and passes the token to the next logical device. This continues until
the last logical device has received the token. That device then passes the token
back to the originator of the token. At this point the scheduled time is over and the
unscheduled time begins.

Similarly to scheduled time communications, the first logical device sends any nec-
essary data and passes the token to the next logical device. This continues until the total
allocated unscheduled time is reached. Then the guardband time begins.

In the guardband period, the device with the lowest address can send a maintenance
message. This device is called the moderator and the message is called the moderator
frame. The maintenance message typically includes

The synchronization of timers in each device
The NUT

The scheduled time

The unscheduled time

Miscellaneous maintenance data

In the event that there is no moderator frame in two consecutive NUTs, the
device with the next-lowest address automatically becomes the new moderator. If
a device with a lower address comes onto the network, that device will assume the
role of moderator.

Communication can be peer to peer or master-slave. Multiple masters are allowed
to exist on a ContolNet network. ControlNet is a token-ring system. Each device waits

310

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

until it has the token before it talks. Then the token is passed to the next logical device.
This ensures that each device waits no longer than the user selectable time to access the
network. One of the largest advantages to using ControlNet is that it is deterministic.
This can be crucial if the application is mission critical.

ControlNet uses a producer/consumer method. In a producer/consumer model, mul-
tiple devices can get the same data all at once.

The devices on a ControlNet network are arranged logically (not necessarily
physically). Each device knows the address of the device to its logical left and logi-
cal right. If a device has the token, it can send data until it is done or the token time
limit is reached. In either case the device then passes the token to the next logical
device.

If we take the maximum time each device can hold the token, we can calculate how
long it will take for the token to return to a specific device. This is deterministic. We can
determine the worst-case scenario. If the application requires that updates must be done
every X ms, it can be determined if that will occur.

If the token hasn’t been passed in a given period of time, the network assumes that
the device failed and the logical-next device automatically regenerates the token and
takes over for the failed device.

ENTERPRISE-LEVEL COMMUNICATIONS

The enterpise level incorporates the office areas of an enterprise. The business systems,
email, sales, design, and so on, all typically operate at this level. Ethernet is almost exclu-
sively used at this level to create computer networks.

Ethernet

Most people think of Ethernet when they think of networking. Most home and office
computer networks are Ethernet. Ethernet was developed by Xerox in the 1970s. The
IEEE published the 802.3 standard in 1985, and it was adopted by the ISO as a world-
wide networking standard. The 802.3 standard is normally known as Ethernet by most
people.

On an Ethernet network only one device can talk at a time. Ethernet is a decentral-
ized network. No particular device has control over the wire.

Ethernet is a bus system. It is based on a bus that is shared by all devices on the net-
work. Typically unshielded twisted pair wires are used. 10/100BaseT is the most common
type of wire that is used.

Ethernet is not deterministic. It cannot guarantee that data will get from one device
to another within a certain period of time. Ethernet relies on the Carrier Sense Multiple
Access/ Collision Detection (CSMA/CD) access method.

CSMA/CD is a set of rules determining how devices on a network respond when
two devices attempt to use the network simultaneously. If they do, it causes a data colli-
sion. Devices on an Ethernet network use CSMA/CD to physically monitor the traffic on
the line at participating stations. If no transmission is taking place at the time, a device

CHAPTER 12—INDUSTRIAL COMMUNICATIONS 311

can transmit. If two devices try to transmit simultaneously, a collision occurs, which is
detected by all participating devices. The devices that collided wait a random amount of
time and try to transmit again. If another collision occurs, the time intervals from which
the random waiting time is selected are increased. Networks using CSMA/CD do not
have deterministic transmission characteristics.

The best safeguard is to underload an Ethernet network. Ethernet transmission
speeds are very high compared to other networks, and if the load is kept low, the delays
may be acceptable for an industrial network. If the application is mission critical, how-
ever, a deterministic, token-passing network may be required.

Ethernet is becoming more popular in control- and even device-level networking. It
is the most prevalent personal computer networking standard and is based on CSMA/CD
access methods and bus structure.

Ethernet is popular because it is widely used for computer networking and it is rela-
tively inexpensive to implement. Most controllers can now be purchased with Ethernet
capability, and most PLCs have Ethernet communication modules available. Figure 12-13
shows an example of a modular I/O block that has Ethernet capability. It can be easily
configured as ControlLogix I/O and can be controlled over a regular Ethernet network.
The hardware shown in the figure has digital and analog I/0. Industrial Ethernet is the
name given to the use of the Ethernet protocol in an industrial environment for automa-
tion and machine control.

Figure 12-13 1/O block that uses Ethernet for communications to a CLX controller.

312

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Ethernet for Control Networks

Ethernet is nondeterministic. This has often been used as a case against using
it for control applications. Determinism enables users to accurately predict the
worst-case data transmission. Improvements in Ethernet technology have im-
proved Ethernet’s determinism, repeatability, and performance. Switches can be
used to break up communications networks into single devices or small groups of
devices.

Using switches in place of hubs and running full duplex completely eliminates the
chances of collisions on the wire. Only two devices are connected to any wire, and with
full duplex they can both send and receive simultaneously. The switch will store and
forward packets it receives to the other port, eliminating collisions within the switch
(a symptom hubs suffered).

The universal acceptance of Ethernet TCP/IP has made it a popular choice for
many users. Ethernet has a wide variety of compatible products and components that
are available at low cost. The use of Ethernet for control applications will probably con-
tinue to grow rapidly. In fact, EthernetIP is now used nearly as often as ControlNet for
controlling I/0, AC drives, and so on.

QUESTIONS

Name and describe the three levels of communications.
Define the term asynchronous.

Define the term synchronous.

Define half duplex.

Define full duplex.

What is daisy chaining?

What is token passing?

What is DH+, and what is it used for?

What is DeviceNet used for?

How many nodes can a DeviceNet network have?

© P N> Ok WD

— =
—— O

. What is a scanner, and what does it do?

. What is a scanlist?

. What is SERCOS?

. What is ControlNet used for?

. Which of the following can a ControlLogix system be used for?

— = = =
Ut W~ W DO

a. A stand-alone controller
b. A process controller
c. A motion controller

CHAPTER 12—INDUSTRIAL COMMUNICATIONS 313

d. A communications gateway
e. All of the above.
f. a,c,andd

16. Define the acronym NUT.
17. What is CSMA/CD?

18. What does the term deterministic mean, and why is it important in industrial
communications?

This page intentionally left blank

CHAPTER

I3

Motion and Velocity Control

OBJECTIVES

On completion of this chapter the reader will be able to:

= Explain the typical components in a motion control system.

» Explain the typical inputs to a drive.

= Explain terms such as ball screw, lead, pitch, resolution, linear interpolation,
circular interpolation, and so on.

» Explain how motion control is accomplished in ControlLogix.

INTRODUCTION

Motion control is very common in automated systems. Figure 13-1 shows an example
of an XY servosystem. This is a two-axis application. The X axis is the horizontal axis of
motion. The Y axis is the vertical axis of motion.

CONTROLLOGIX CONTROLLER

A ControlLogix controller is used to coordinate the motion of the two axes in the system
shown in Figure 13-1. The system has the capability to move each axis independently
or to coordinate the two axes to move in a linear or even a circular path. Position and
velocity are both controlled. The XY table in this application is just one component in the
system; there are additional components and I/Os. In many applications control would
be accomplished by having a PLC control everything but the motion aspect of the cell.
A separate controller and drives, probably from a different manufacturer, would control
the motion. The motion controller and the PLC would typically utilize digital I/0 to

316 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

handshake. The motion controller would utilize a manufacturer’s proprietary software
and language to develop the motion program. The technician would have to be able to
program and integrate the PLC and the separate motion controller. A ControlLogix sys-
tem can do it all.

Figure 13-1 An XY (two-axes) motion control system.

SINGLE-AXIS LOOP

Let’s examine an axis of motion. A single-axis of motion typically consists of a ball screw, a
motor, an encoder, over-travel switches, a home switch, a motor drive, and a controller.

The ball screw will have a lead value for the spiral threads. The lead value deter-
mines how far the nut will move in one revolution. Figure 13-2 shows an axis of motion
and the motor and encoder, ball screw, home and limit switches, and table that moves on
the ball screw.

Ballscrew - Motor and Encoder

CCW Limit Switch Home Switch CW Limit Switch

Figure 13-2 A single axis of motion showing over-travel limit switches and the home
switch.

CHAPTER 13—MOTION AND VELOCITY CONTROL 317

Ball Screw

A ball screw is used to translate rotational motion to linear motion. The threaded shaft
on a ball screw (see Figure 13-3) provides a spiral raceway for ball bearings. A ball
screw is essentially a low-friction high-precision screw. Ball screws are manufactured
to very close tolerances and are used in applications that require high precision. The
ball assembly acts like the nut in a regular screw system. The threaded shaft is the
screw. The nut has a mechanism to recirculate the ball bearings, thus reducing friction
and wear.

Backlash (slop) is effectively eliminated by a preload that is applied to the ball bear-
ings by the nut assembly. Low friction in ball screws yields high efficiency. A ball screw is
typically 90 percent efficient. An Acme lead screw of the same size would be about 50%
efficient due to the higher friction. The higher efficiency of ball screws enables smaller
motors to be used.

Note the distance between the spiral threads on the ball screw (see Figure 13-3).
We call the distance between two threads the pitch. We call the distance the nut on a
screw advances in one revolution the lead. The pitch is equal to the lead. The screw in
Figure 13-3 has a pitch of 0.375 inch. This means that the lead is also 0.375. The nut
would advance 0.375 inch if the screw is rotated one revolution. If the screw were ro-
tated 180 degrees, the nut would move 0.375/2, or 0.1875, inch. The lead is used when
the resolution of an axis of motion is calculated.

Figure 13-3 Ball screw. The pitch is the distance between two adjoining threads.

Figure 13-4 is an illustration of a single, servo-controlled axis. Note the PLC is the
overall controller for the system. The PLC will send signals to the drive to control the
motion. The drive will control how much and how fast the motor turns. The encoder
will provide feedback that the drive will use for position and velocity information. For
example, if the PLC commanded the drive to move the axis to the right 10 inches at a
velocity of 5 inches per minute the drive will monitor the encoder counts to make sure
how far it is moving and also how fast it is moving. The position and the velocity are
closed loops, meaning that the drive monitors the feedback from the encoder and au-
tomatically adjusts so that the axis moves to the correct position and also at the correct
velocity. Note the home switch and the limit switches in the figure, which are inputs to
the drive.

318

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

The axis has a positive (CW) and a negative (CCW) hard over-travel input. Hard in
this case means a mechanical/electric connection. This is a real-world switch to monitor
the axis and make sure it does not go past the limit. The over-travel inputs are used to
make sure the drive cannot turn too far in either direction. Study Figure 13-4. If the
table goes too far to the left, it contacts a CCW normally closed limit switch. This opens
the switch, and the input to the CCW over-travel switch becomes false. This inhibits the
drive from moving any more to the left and prevents damage to the drive or mechanical
components. It will allow positive motion to move to the right and move off the limit. The
limit sensors are normally closed and provide fail-safe protection. If a sensor fails or a
wire is cut, the drive will have a low on that over-travel input and the drive will be inhib-
ited from moving in that direction. In CLX the programmer can configure how the drive
will react to an over-travel condition.

Table Encoder
/"ﬁ AN AN
CCwW Home Ew. t
Limit Switch S';;}'tch
Switch (N.O.) .
(N.C)) (N.C.) Drive il PLC

Figure 13-4 A single-axis motion control system.

Homing

A home switch is used to calibrate the position of each axis to a known reference. Typi-
cally, the home switch is located along the axis of movement between the CCW limit
switch and a CW limit switch. A home switch is especially important in many systems
because the controller will lose position information during a power cycle or reinitializa-
tion. The programmer can choose how home is established in a CLX system and can
utilize the home switch to establish the home position. If this method and a motion axis
home (MAH) instruction are used, the axis will move until the home switch is encoun-
tered and this position will be established as home. A more accurate method is to use the
switch and the index pulse of the encoder. This is the switch/marker method. The index
pulse is a part of the encoder that produces a signal once every revolution. It probably
takes many revolutions of the motor to move the table through the whole range of mo-
tion. The index pulses once every revolution. When the switch/marker method is used

CHAPTER 13—MOTION AND VELOCITY CONTROL 319

and a MAH instruction is executed, the axis will move until it finds the home switch. This
gets it close to home and within one revolution of perfect home. When the drive sees the
home switch, it reverses direction and moves slowly until it sees the index pulse from the
encoder. This is used to establish perfect home. The programmer can use this as actual
home or offset the position to meet the needs of the application.

Resolution of a System

The combination of the lead of the screw and the encoder counts per revolution de-
termine the resolution of the axis. Figure 13-5 shows an example. In this example the
lead of the ball screw is 0.375 inch. For every revolution of the screw, the nut will move
0.375 inch. In this example there are 2000 encoder counts per revolution. So one revolu-
tion will provide 2000 counts and the nut will move 0.375 inch. If we divide the 0.375 inch
by the 2000 counts, we find that the resolution is equal to 0.0001875 inch per count.

Lead of the ball screw = .375 inch
Encoder counts per revolution = 2000
.375/2000 = 0.0001875 inch resolution

1 inch / 0.0001875 = 5333 counts per inch

Figure 13-5 How resolution is determined.

Drives also have an enable input. This input must be true (high) for the drive to be
enabled and operate. The drive must be enabled in order for any motion commands to
execute. This is accomplished by using an output from the PLC to the enable input of the
drive.

INCREMENTAL AND ABSOLUTE POSITIONING

Absolute position means actual position in a Cartesian coordinate system. For example,
in Figure 13-6 point A’s absolute position would be X2, Y2.5. If the machine’s axis were
presently at point D and we wanted it to move to point B in absolute mode, we would just
specify the actual location of X1, Y2.

An incremental move involves a distance to move and the direction to move in. For
example, if we wanted to program a move from point D to point C, it would be X1.5, YO.
In other words X has to move to the right (positive) 1.5 inches and Y does not change
position to move from point D to point C.

If we wanted to move from point A to point D in incremental mode, it would be
X2, Y-1.5. In other words, the X axis would have to move to the left (negative direction)

320

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

2 inches and the Y axis would have to move down (negative direction) 1.5 inches. Re-
member that incremental is direction and distance. Absolute is the actual position.

Y Axis
254 i
2 + ‘B
15
1+ -D -C
5T
—t—t+—+—+— X Axis
5 115 2 25 3

Figure 13-6 Incremental and absolute.

Understanding Interpolation

If only one linear axis is moved, there is no interpolation involved. If we have two axes
and want to move both axes from the current location at the same time to a new position
and we want the move to be a straight line between the start and end position, we need
to interpolate. For example, in a move from point 1 to point 2 in Figure 13-7 to achieve
a perfectly straight line to get to the programmed endpoint, the control would have to
perfectly synchronize the X and Y axes moves and speeds. This would be called linear
interpolation.

In a linear interpolation move, the control calculates a series of extremely small, single-
axis steplike moves for each axis, which keep the move as close to the programmed linear
path as possible. The step size is equal to the machine’s resolution, usually 0.0001 inch, or
0.001 millimeter. With the accuracy of motion controllers, it will create an almost perfectly
straight-line motion between the motions of the two axes.

Y Axis

Point 2

/ X Axis
—

Point 1

Figure 13-7 Linear interpolation.

CHAPTER 13—MOTION AND VELOCITY CONTROL 321

Circular Interpolation

Many industrial applications require that the machine be able to move in circular paths.
This requires circular interpolation. ControlLogix is also capable of circular interpolation.
Consider Figure 13-8. A circular move from point 1 to point 2 would involve two axes
of motion. The X-axis motor must start out at a fairly high speed while the Y-axis motor is
barely moving. As the move progresses, the Y increases in speed in relation to the X until
the arc is half done. At this point the Y axis is moving at a slightly higher speed than the X
axis. As the move progresses, the X axis is continually slowing down in relation to the Y axis
until point 2 is reached. Circular motion is classified as clockwise or counterclockwise.

Y Axis
Point 1

\ Point 2

X Axis

Figure 13-8 Circular interpolation.

A Motion Coordinated Circular Move (MCCM) can make a circular move using up
to three axes. A MCCM circular move instruction is specified as either absolute or in-
cremental. The actual speed of the circular move is either at a commanded speed or at a
percentage of maximum speed. The MCCM instruction requires data that will enable it
to interpolate (calculate) the path. There are four different methods to provide the infor-
mation the instruction needs to interpolate the path.

The first method of programming a circular path is to specify the center of the circle
and the endpoint of the move. In Figure 13-9 the endpoint of the circular path is X2.0,
Y2.5. The center of the arc is at X2.0, Y1.0.

Y Axis

25 | End Point
< X2.0Y25
2 1 7

15
1 =

_Stari Point bircle Center
B X2.0Y1.0

— X Axis
5 115 2 25 3

D A

Figure 13-9 The circle center method of programming a circular move.

322

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

The next method involves specifying the endpoint of the circular move and a Via
point. A Via point is a point somewhere on the circular path between the start point and
the endpoint. Figure 13-10 shows an example of a Via point.

Y Axis Via Point
25 1 X2Y2.5
2 1
15 T
1+ End Point
Start Point X3.5Y1
5
f fF—F—+—+—+ X Axis
S5 115 2 25 3 35

Figure 13-10 The Via point method of programming a circular move.

The next method is to specify the endpoint and the radius of the arc. In Figure 13-11
the endpoint would be X3.5, Y1 and the radius would be 1.5. This is enough information
for the circular move instruction to make the move.

Y Axis Radius 1.5
25 1
2 1
15 +
1 4+ End Point
Start Point X3.5 Y1
5+
} ———+—+— X Axis
5 115 2 25 3 35

Figure 13-11 The radius method of programming a circular move.

The last method is by specifying the endpoint and the incremental location of the
center of the arc from the start point (see Figure 13-12). The endpoint in this example is
X3.5, Y1. The other information that must be specified is the incremental distance and
direction of the center of the arc from the start point. The center of the arc is 1.5 inches

CHAPTER 13—MOTION AND VELOCITY CONTROL 323

to the right of the start point in the X direction. The Y location of the center of the arc
in relation to the start point is the same. There is no change up or down (Y direction)
between the start point and the center of the arc. So for this example the X value would
be X1.5 (it would be positive 1.5 because the center is to the right of the start point). The
Y value would be 0, because there is no change in the Y direction between the start and
center points.

Y Axis Incremental Distance and
25 | Direction from Start to Center
’ X+1.5Y0
2 1
15 T
1+ . End Point
Start Point X3.5 Y1
5 T
F—f—F—F+—+—+—1 XAxis
S5 115 2 25 3 35

Figure 13-12 The incremental method of programming a circular move.

CONTROLLOGIX MOTION CONTROL

Figure 13-13 shows how a typical motion control system would be implemented in a CL
system. Modules are chosen and installed in the chassis. RSLogix5000 software is used
to configure each axis of motion in your project. The motion application is written in
logic in the ControlLogix project. The application is then downloaded to the controller
and can be run.

There is an international open standard for multiaxis motion synchronized motion
control. It is called the Serial Real-Time Communication System (SERCOS) and is
designed to be a protocol over a fiber-optic medium. Modules that employ the SERCOS
standard are also available. Figure 13-4 shows an example of a SERCOS system. The
SERCOS interface uses a ring topology with one master and multiple slaves (axes). The
fiber-optic ring begins and ends at the master.

324 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

SERCOS

Figure 13-13 A typical ControlLogix Servosystem. (Courtesy of Rockwell Automation, Inc.)

The interfacing of the control device (PLC) and the drives that control motion is
especially important in the precise coordination and control of axes of motion. The
SERCOS interface is a global standard for the communication between industrial
controls, motion devices (drives), and I/O devices. It is classified as standard IEC
61491 and EN 61491. The SERCOS standard is designed to provide hard real-
time, high-performance communications between motion controllers and digital
servodrives.

SERCOS-I was released in 1991. The transmission medium is optical fiber on a ring
topology. The data rates that are supported are 2 and 4 Mb/second. Cyclic update rates
are as low as 62.5 microseconds. SERCOS-I supports a Service Channel that allows
asynchronous communication with slave devices for less time-critical data.

SERCOS-II was introduced in 1999. It increased data rates to 2, 4, 8 and
16 Mb/second.

Figure 13-14 shows a drive for a CLX SERCOS servosystem. Each drive in a SER-
COS system is assigned a node address. The node addresses are set on the right side of
the drive. There are two switches that are used to set the node address. The drive also has
the motor connections, limit, home, and other input connections. The drive also has two

CHAPTER 13—MOTION AND VELOCITY CONTROL 325

fiber-optic connections for the SERCOS communications to the SERCOS servocard in
the CLX chassis.

(@) Modvle
- " O Oi-:__ Status L£D
Lagic Power LED b
: N3
(0= foa
- Cornvactor
e - Nade Add 11
DC Bus Commactions for 1[[)]l] > Swiche
Aot St s | (. [{)] 00 5 g
Dua Rty ConMector
AC Inpet Powrer
Ll =
]
Matoe Power °" Flex eove [Ra) aed
Connections — Tramarnat (T}
i °' Conmectors
' ON &40
h ey
Cable Sk Oamp —— 1 E—

Figure 13-14 Typical servo motor drive. (Courtesy of Rockwell Automation, Inc.)

The pin numbers for the inputs on the drive are found in the drive manual. The
drive’s enable input is connected to a CLX output. The CLX output must be turned on to
enable the drive input.

Sequence for Starting a Drive Application

Note that you must configure the project for the axis of motion and the parameters for
each axis of motion. There is an example of configuring a two-axis CLX servosystem
in Appendix E. The rest of the chapter will assume that a motion application has been
correctly configured in a CLX project.

326

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

There is a correct sequence for starting a drive application. You must first enable the
drive. An output from the CLX system is used to turn the drive enable (EN) input on.
The drive EN input must be high for the drive to control an axis. The logic in the pro-
gram is used to turn the drive EN on when the drive needs to be enabled.

Next a motion servo enable (MSO) command must be executed for each drive to
close the servoloop so that the drive controls the position and velocity. An MSO is an
instruction that is used in the program to close the servoloop for an axis. After the drive
enable is on and the MSO instruction has been executed, the drive is ready to execute any
motion commands it receives.

Next the drive should be homed with a home command. This establishes a known
position (home position) for the axis. Note that once the drive EN has been turned on,
the programmer can utilize Motion Direct commands, without logic, to test the axis.
Note that the MSO and Motion Axis Home (MAH) can be executed with Motion Direct
commands.

Motion Direct Commands

You must enable the drive to use motion direct commands. This can be done easily in a
simple program. Construct a very simple ladder diagram that turns on the outputs that
are connected to the EN input for each drive. This is covered in Appendix E.

Once the drives are enabled, you can try the motion direct commands. Motion
direct commands can be used to test your axes before you write the actual logic. You
must be online with the CLX in order for any of these commands to work. Right-click
the axis icon for the axis you want to test, then click on Motion Direct Commands. The
Motion Direct Commands window will appear (see Figure 13-15). The first command
that must be executed is an MSO. First click on MSO and click on the execute button.
The MSO instruction closes the servoloop for that axis. This must be done or the drive
will not execute any commands. Once the MSO is executed, the drive will close the
servoloop.

The axis is ready to be homed. When an axis is first started, it does not know where it
is. The axis needs to be homed to establish its position. The motion direct command MAH
will use the parameters that were set up above in the homing properties. Appendix E
covers the configuration of these parameters. Click on MAH and then on the Execute
button.

Once the axis is homed, other commands may be tried. A Motion Axis Jog (MA])
instruction can be used to jog an axis. A MA] instruction will make the axis move (jog)
at a specified speed and direction. Note that you choose the speed and direction before
you execute the MA] command. A Motion Axis Stop (MAS) command must be used to
stop the axis. When the MA] command is executed in incremental mode, the drive will
continue to move until it receives a MAS command. Be careful not to exceed the limits
on your axis.

The table in Figure 13-16 shows some of the Motion Direct-Motion State commands
that are available. Note that they are also available as motion instructions for program-
ming logic. Motion State commands can be used to enable the drive, close the servoloop,
reset faults, and so on.

CHAPTER 13—MOTION AND VELOCITY CONTROL 327

alﬁolhn Direct Commands - X_Axis: 3

Be MSF
@ MASD
B MASH
@ MDO
B MDF
B MAFR
= L1 Miofaom Mowe
e MAS
B MAH
B M)
B nam
Q& MAG
@ MCD
B AP

= 5% Mhanemn Fiansm

¥ N\ DANGER Prenting Emecute’ sy Caune moton

Emml Clowl Fieils

Figure 13-15 Motion Direct Commands screen.

Command ‘ Name of Command Description

MSO Motion Servo On Used to close the servoloop. The servoloop must
be closed for the drive to execute commands.

MSF Motion Servo Off Used to deactivate the drive output for the
specified axis and to deactivate the axis’s
servoloop.

MASD Motion Axis Shutdown Used to force a specified axis into the Shutdown
state.

MASR Motion Axis Shutdown Reset Used to transition an axis from an existing
Shutdown state to an Axis Ready state.

MDO Motion Direct Drive On Used to activate the module’s Drive Enable.

MDF Motion Direct Drive Off Used to deactivate the module’s Drive Enable.

MAFR Motion Axis Fault Reset Used to reset faults in an axis.

Figure 13-16 Motion Direct-Motion State commands. Note this is only a partial list of avail-

able commands.

328

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

The table in Figure 13-17 shows some of the Motion Direct-Motion Move com-
mands that are available. Note that they are also available as motion instructions for pro-
gramming logic. Motion Move instructions can be used to make the axis stop motion,
home the axis, jog the axis, make an absolute or incremental move, and so on.

Command Name of Command Description

MAS Motion Axis Stop Used to make an axis stop motion.

MAH Motion Axis Home Used to make an axis perform a home routine to
establish home position.

MAJ Motion Axis Jog Used to jog an axis plus or minus direction. Once
active it will continue to move until a MAS command
is used.

MAM Motion Axis Move Used to move an axis a commanded distance

(incremental) or to a commanded position (absolute).

Figure 13-17 Motion Direct-Motion Move commands. Note this is only a partial list of avail-
able commands.

Motion Direct commands are a great way to test your axes and make sure they have
been properly configured.

Programming Logic for Motion

The first step in your motion program should be to enable the drive. The logic should
turn on a PLC output that is wired to the enable for each drive to enable the drive. This is
covered in Appendix E. The drive enable must remain high for the drive to operate. After
a drive is enabled, an MSO instruction is used to close the servoloop on each axis. This
can be a momentary instruction; the MSO instruction does not have to remain high.

MSO Instruction

Step 1. Enable each drive with an output from an output module.
Step 2. Close the servoloop for each drive with a momentary MSO instruction.

Motion Commands

At this point motion instructions can be used to move and control the axes. When using
any of the motion instructions in a program, you need to create a tag for the instruction.
The data type of the tag will be motion instruction. Motion instructions need a motion-
type tag to store configuration and operation data. Figure 13-18 shows an example of
an MSO function block. Note that the axis must be chosen (Y_Axis in this example).
Each motion function block must also have a tag. In this example the tag was named
Y_MSO_Tag. It is a good idea to use tag names that will help to remember what they are
used for.

CHAPTER 13—MOTION AND VELOCITY CONTROL 329

{ b s MoBion Saervo Or v Iy

Yoo il ol Y MS0 1 wi) 1

Figure 13-18 Note that in motion commands the axis must be chosen (Y_Axis in this
example). A tag of type motion must be created for each instruction.

These motion tags have a variety of tag members available that may be useful in your
programs. Figure 13-19 shows a MAH instruction.

(g N r M A

X b d BWAOBIO AxiE MO v Ty

)
¥i

MhgBicn Coiffral Y _Home_Tag iR

Figure 13-19 A MAH instruction.

Note the EN, DN, ER, IP, and PC to the right of the instruction. They are tag
members for the tag named X_Home_Tag. These can be useful in your ladder program.
Figure 13-20 shows the tag member bits and the conditions they represent. After the
homing of an axis has been completed, other move instructions can be used.

Tag Member ‘ Name and Function

EN Enable. Set when the rung makes a false-to-true transition. Remains set until
the servo message transaction is completed and the rung goes false.

DN Done. Set when the axis’s faults have been successfully cleared.

ER Error. Indicates when the instruction detects an error, such as if an unconfigured

axis was specified.

IP In Process. Set by a positive rung transition. Cleared after the Motion Axis Stop
is complete or by a shutdown command or a servo fault.

PC Process Complete. Set after the stop operation has successfully completed.

Figure 13-20 MAH instruction bits

Jog Instructions

Jogging is accomplished with the MA] instruction. A MA] instruction is normally
used with a MAS instruction (see Figure 13-19). The MAJ instruction can be used to
jog an axis in the forward or reverse direction. Once the instruction is energized, it

330

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

continues to jog even if the rung goes false. You must use an MAS instruction to stop
the motion.

Study the example in Figure 13-21. The jog instruction is being used with an axis that
was named Y_Axis. Note that Y_Axis was entered into the MAJ and the MAS instructions.

In this example a normally open (XIC) contact is used to control a MAJ instruction.
A normally closed (XIO) contact with the same tag is used in the second rung to control
the MAS instruction. The same tag was used for the contact in rung one and the contact
in rung 2. This means that only one rung can be true. If the Jog_Bit is true, the MA]
executes. If it turns false, the MAS rung is true and the jog motion stops.

Jog B ; Ml "
k 1 f ¢ MhcBion Axis Jog (S LT
& wire Y _Axig i :l‘n-
W oot Y JOG Teg TR,
D B 0 + ¥ >
s (i 1
et Lol s Units por S
Mo ==
Jog B ; LT
4 — 4 MAGBON Axig Shog o 3 1 e
A g Y A v T
NhoBior ol - _ll.lu"-. Tag o T e
op Tvpe Ny . ¥
Miore == =

Figure 13-21 A simple ladder to control the jog of the Y_Axis.

Configuring a MAJ Instruction

There are several parameters that need to be configured in a MAJ instruction. Most of
the parameters are similar in all motion instructions. The instruction Help file in RSLogix
5000 explains the parameters for each instruction.

Direction

After you have chosen the axis and assigned a tag name, you must enter a direction. The
MAJ instruction can move in a positive or negative direction. Enter a 0 for forward or a
1 for reverse jogging. A tag name could also be entered so your logic could change the
direction during operation.

Speed
Enter a number that represents the speed of the jog move in terms of units or en-
ter a tag name for the speed. In the example in Figure 13-20, 2 was entered. In this

CHAPTER 13—MOTION AND VELOCITY CONTROL 331

system the resolution was set up to be inches, so this would be a jog rate of 2 inches
per second.

Speed Units

Enter a 0 if you want to use a percentage of maximum speed or a 1 if you want units per
second. Units are dependent on how you set your resolution. The unit in this example is
an inch.

There are a few more parameters to enter. Study Figure 13-22. Note the Less <<
button on the bottom of the MAJ instruction. If all of these parameters are not displayed
there will be a More >> button. If they are not all visible click on the More >> button and
enter the information. The parameters to be entered are shown in Figure 13-22.

Jog B ' TN
% ; 4 MAOBIOn Axie Jo0 e Iy
A xiif ¥ _Axis
MASEIOM ComBol ¥ _.’l‘.i‘f.'l___':h‘lﬁ =0
Dl Bt 0
—
ey .
-
Seed ILIRiR 2 LUinis pir Sl
Accel Rabo 100
Accal Uniks Units pav 22
el Hoabe 100
sl Uinits UINks P 86Ce
S T gt 20ndal
Vifier e Diiealbivnd
Ve g ey Py g e
.- lﬂ‘_

Figure 13-22 A MAJ instruction. Note the << Less button.

Acceleration and Deceleration
Next an acceleration parameter must be entered. A value is entered for the acceleration
rate. The value 100 was entered in this example. Next the acceleration units must be con-
figured. Enter a 0 to configure them to a percentage of maximum acceleration. Enter a 1
to enter in terms of units per second®. In this example 1 was chosen and 100 was entered
for a rate.

The next two are deceleration parameters. These are set just as the acceleration
parameters in this application.

The next parameter is the move profile for acceleration and deceleration. If 0 is
entered, it is a trapezoidal profile. If 1 is entered, it is an S-curve profile.

332 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

The trapezoidal profile is the most common. It also provides the fastest acceleration
and deceleration times. Figure 13-23 shows an example of a trapezoidal profile.

T ape oudad Accol Dec ol Tupe

Wl y

Tire

agzel

Tiee

i
f =

Figure 13-23 A trapazoidal profile. (Courtesy of Rockwell Automation, Inc.)

JoK

?

) == o - R

The S-curve profile is used for special circumstances. It is often used when there is
an unusual stress on a mechanical system and the load on the system must be minimized.
The S-curve profile is slower than trapezoidal because acceleration and deceleration val-
ues must be lower in the S-curve. Figure 13-24 shows an S-curve profile.

Figure 13-24

§cmve Accol Decel Tame
i) E— i
g A 1\
” 1/ | | A N |
_. I I [| Time
-
1 1 /\ ; |
F) \

. L

] | m -

! I AV |
1] Al
L . | | :

Torwe

i |

An S-curve profile. (Courtesy of Rockwell Automation, Inc.)

CHAPTER 13—MOTION AND VELOCITY CONTROL 333

The next parameter to set is the merge parameter. If an axis is moving due to an-
other command and the jog is activated, this choice determines whether the movement
should be turned into a jog and also controls the speed of the merge between the cur-
rent movement and the jog movement. If 0 is chosen, merge is disabled. If 1 is chosen,
all movement would be turned into pure jog. Each of the choices is described below.

Merge Disabled

Merge disabled means that any single-axis motions that are currently executing are not
affected by the activation of this instruction and results in superimposed motion on the
affected axes. Any coordinated motion instructions for the same specified coordinate sys-
tem runs to completion on the basis of its termination type.

Coordinated Motion

Any currently coordinated motion instructions that are executing are terminated. The
motion that is active is blended into the current move at the speed that is specified in the
merge speed parameter. Any single-axis motion instructions that are currently executing
in the specified coordinate system will not be affected by this instruction being activated
and will result in superimposed motion on the affected axes. Coordinated motion instruc-
tions that are pending are cancelled.

All Motion

Single-axis motion instructions that are currently executing in the specified coordi-
nate system and any coordinated motion instructions that are currently executing
are terminated. The prior motions are merged into the current move at the speed
specified in the merge speed parameter. Pending coordinate move instructions are
cancelled.

Lastly the merge speed is set. If you entered a 1 for Merge, then this field will de-
termine the merge speed. If you choose At Current Speed as the type of Merge, the
speed of the jog is automatically set to the current actual speed of the axis. In this case,
any specified speed value or tag variable associated with the MAJ instruction is ignored.
If you chose At Programmed Speed as the Merge Type, the speed of the jog is set to the
entered speed value or tag variable. If this speed is different from the current speed of
the axis, the axis is accelerated or decelerated as specified to the new speed.

Motion Axis Move (MAM) Instruction

The MAM instruction is one of the more useful move instructions. It is used to move an
axis in the absolute or incremental mode. To use a MAM command, you first select the
axis and create a tag for the command.

Figure 13-25 shows an example of a MAM instruction. The first parameter to be
entered is the axis that is to be moved (X_Axis in this example). Next you must enter a
tag name for a tag to be used by this instruction. X_Axis_ MAM_Tag was entered. This
must be a motion-type tag. The MAM instruction will store parameters and information

334

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

related to the instruction in this tag. Next the type of move must be chosen. If 0 is en-
tered, the move will be absolute. A 1 would make this an incremental move.

Incremental means that a distance and direction command in this instruction would
move the axis that amount and direction from its current position. For example, a position/
distance of 5.5 would make the axis move 5.5 inches from its current position in a posi-
tive direction. So an incremental move is really a distance and direction to move. If the
instruction is executed and then reexecuted, the axis would move again, because it is an
incremental move.

Absolute means that the instruction would move to a commanded position. For
example, if the position/distance value was 5.5, the axis would move to actual position
5.5 from wherever it currently is. If the instruction is executed and then reexecuted,
the axis would not move again, because it an absolute move and the axis would be at the
absolute commanded position after the instruction was executed the first time.

Mg X _ADaoiube - M AN
' 1k + MhoEior Axiis Migwe — XM
A oaiis X _Axig]
LT ey R M _Aois _Man_Tag TN
Whoew T 1
t L
Soaition 10.2%0
=L
oy 25
-
o) Uls UINiRE pbr S
Al el Make 100
Acceal Uitz UINiks pir 88C2
Lol Wogte 100
Onc ol LUINIES Units piv s8]
PO She T oo 2 Cuchill
Whee gie Dins attiiey
ot e gy Ve o e
=5 Loss

Figure 13-25 A MAM instruction.

The position that is entered is the absolute position or the incremental direction and
distance if incremental is chosen. The rest of the entries are the same type as were en-
tered for the jog command.

Note that tags could have been used for all of the parameters in the instruction. This
would allow values to be changed in run mode. For example, a tag could be used to
change from absolute mode to incremental mode. The speed could be varied by the pro-
gram if a tag were used.

CHAPTER 13—MOTION AND VELOCITY CONTROL

335

Motion-Coordinated Linear Motion (MCLM) Instruction

Use the MCLM instruction to make a multidimensional linear coordinated move for the
specified axes within a Cartesian coordinate system. Imagine a two-axis system, like an
XY table. If we would like to make an angular move, both axes would have to be precisely
coordinated to make a smooth linear path. Figure 13-26 shows an example of a linear,
two-axes interpolated move. Figure 13-27 shows an example of a MCLM instruction. You
can define the new position as either absolute or incremental.

Y Axis

X 10.625 Y5.25

X Axis
Figure 13-26 A linear interpolated move.
MACLAR Mioned s ANCLAE \
_: H { Migtion Cooedingbed Lingar Move ={END
e dirabe Sortoe MC;M”CQIC}Q
MAGEGIn Combnol mhutihgdm =T
Mhirew Ty 0
-
LY e WEH.W ; ,
X A 10 824 = >
& ufig - P!
Sgmed A
S Lk s LUNiRS pdr ShC =)
Accol Rate 4
Acical Uiniks Units pie 882
Dt ol Kgle L
Owne ol LIk 2 LUinits i 88C2
HO Fomge 2cndial
Termination Type 0
Wity Dt
Mhev pe S B agi e
4 [ﬂj;

Figure 13-27 An MCLM instruction.

336

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

The first entry in an MCLM instruction will be the Coordinate System. Type a name
in and then right-click on it. Choose Coordinate System for the type of the tag. Then click
on the ellipsis to the right of your Coordinate System tag name. The screen shown in
Figure 13-28 will appear.

The Coordinate System Properties General entry screen is used to choose the motion
group and choose the axes that will be involved in the motion. Note the Dimension entry
2 was chosen in this example. This means there are two axes involved in this coordinate
system.

» Coordinale System Properties - MCLM_COOR

Gerosal | Units | Dynamics| Tag |

1” I WL ;I
Dvmarutnony H
0 | Coordinate A N Coordination Mode
-i f‘l X_Axis > -
1 E ¥ _Axig - -
M Enabis Coosdinate Syitem Auto Tag Update
oX Corcl | o0 | Hep |

Figure 13-28 Coordinate System Properties General entry screen.

The Coordinate System Properties Units entry screen is used to enter conversion
ratios (see Figure 13-29). In this example there is no conversion so 1/1 was chosen. This
would be used if one axis motion needed to be scaled to the other axis motion.

CHAPTER 13—MOTION AND VELOCITY CONTROL 337

o Loordinate System Properies - MCLM_COOR

Genesal Units | Dynamics| Tag |

Cocedination Unks | Coordinaton Units

At N Corveen sion Rate
_Axiis 1.0 i
10 ik

Figure 13-29 Coordinate System Properties Units entry screen.

The Coordinate System Properties Dynamics entry screen shown in Figure 13-30
is used to enter a maximum speed, acceleration, and deceleration, as well as positional
tolerances for moves.

» Loordinale System Properties - MULM_COUR

Genesal| Unts Oynemics® | Tag |

Venhor

LR Il
M et I‘-'lo Cooedinaton Urits/s
M itsnatn, duc e Ao, |$0 Conednation Units/s "2
M Decooeamon |50 Cooedination Uniks/s 2
Pombon T olssance

Achual IONS Conedinaton Uitz
Command Iﬁfﬁ Coedinamon Uniis

Figure 13-30 Coordinate System Properties Dynamics entry screen.

Figure 13-31 shows the Target Position Entry screen. The endpoint of the move is
entered here.

338 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Targetl Position Entry - MOLM_COOR, MCLM_POS| D)
MI Tag l
| s Miamee _[Torget Poston | Actust Postion |
¥ $24
R SCreen
Set Tangets = Actusts |
sl mssind] s

Figure 13-31 Target Position Entry screen.

Next a tag name must be entered in the Motion Control entry. This tag will be used
by the instruction.

Move Type is chosen next. The choices are absolute or incremental. Enter 0 for abso-
lute or 1 for incremental.

yelecl Datla lype

FE 3akF 3IF 3

Figure 13-32 Declaring the data type for the tag array that will hold the X and Y position to
move to.

CHAPTER 13—MOTION AND VELOCITY CONTROL 339

Figure 13-33 shows the end position for the instruction in the tag editor. The end
position was entered in Figure 13-31.

— MCLM_POS ey
MCLM_POSH 10.628%
MCLM_POS{1] 5.25
Figure 13-33 The array tag that holds the X (10.625) and the Y (5.25) position values for

the move.

The rest of the instruction entries are similar to the previously covered motion
instructions.

CIRCULAR INTERPOLATION

An example of a circular interpolated move is shown in Figure 13-34. In this example the
first move was a linear move to X10, Y10. The next move was a circular path. The end-
point for the circular move is (X15, Y15). The center of the circle is (X15, Y10).

A Motion Coordinated Circular Move (MCCM) instruction can be used to make
the circular portion of the move in Figure 13-34. The MCCM instruction is shown in
Figure 13-35. The entries to the instruction are similar to the MCLM instruction. A co-
ordinate system must be created and configured. The coordinate system is created just
as it was for the MCLM instruction. The Coordinate System for this MCCM example
was called XY.

End Point
/ X15Y15
Start
Position
X10Y10
\A . Circle Center
Previous X15Y10

Move

Figure 13-34 A circular move.

Next a tag name must be entered for the control tag for the instruction. The
instruction uses this tag to store parameters and other information it needs. In this
example the tag was named MCCM_Tag. It is a motion-type tag.

340 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

MOCCME_EhE AN
] E GBI Co0r Ao i Cbar Moo P eo—
Codndiitnale Syibem Xy
Noion Control MCCM_T g =)~
thove Type 0
. P
o posf0) |
X_Axig 150 =
¥ _Axie 150
Cirche Type 1 A
VinCorter Radius Cinclie_Center _Amanfi0) e(PC. e
Divecsion 0
Speesl 2
Speaed Lints Units por 26C
Accol Rate 2
Acosi Units Unts por 862
Dol Rabo 2
Dacl Uinits Units pér 862
nosie Trapezoiial
Termination Type 0
Mher e Dzl
Mg pe Syt Curvent
<« Loss|

Figure 13-35 An MCCM instruction.

To program a circular move, you must specify the endpoint of the move. The end-
point is called the Position. A tag was created of type real. It was named pos[0]. It is an
array tag that holds two values: the X position and the Y position of the endpoint (see
Figure 13-36). The Position for this instruction is X15, Y15.

Figure 13-36 The array tag that is used for the endpoint of the move.

There are three methods for specifying the needed position information: radius,
center, and incremental center. A 1 was entered in the Circle Type parameter (center

CHAPTER 13—MOTION AND VELOCITY CONTROL 341

method). The Circle Center programming method was chosen for this MCCM instruc-
tion so the center of the circle was entered as 15 (X_Axis position) for the first element in
the array and 10 for the second (Y_Axis position). Note that your values must be correct.
If your positions are not accurate, the controller will not be able to interpolate the moves
and a fault will occur.

Next the direction parameter is entered. A 0 is for clockwise and 1 is for counter-
clockwise; 2 is for clockwise full circle, and 3 is for counterclockwise full circle.

The rest of the parameters that must be entered are just like the other motion in-
structions that have already been covered.

Once you have mastered these few instructions, there are many other motion in-
structions that can be used.

USE OF CONTROLLOGIX TO CONTROL ROBOTS

One of the new trends in motion control is to utilize the ControlLogix controller to con-
trol a robot. There are a few companies that now offer the robot arm, minus the control-
ler. They have designed their robot to work with ControlLogix hardware and software.
There are several advantages to this. Programmers only need to know CLX well. They do
not need to learn another system and language for a robot controller. One CLX controller
can control the whole system.

The most complicated part of robotics is translating several axes of generally rotary
motion into Cartesian moves. Robot kinematics involves the mathematical transforma-
tions that are done by a controller to calculate how to move multiple axes of motion to
accomplish Cartesian motion. In other words, how can multiple axes of motion be coor-
dinated to make a point-to-point move, a straight-line move, or a circular move to a spe-
cific point in space? It is very complex. Robot kinematics involve forward kinematics and
inverse kinematics. In forward kinematics, the length of each link and the angle of each
joint is given and we have to calculate the position of any point in the work volume of the
robot. In inverse kinematics, the length of each link and position of the point in work vol-
ume is given and we have to calculate the angle of each joint.

Kinematics has been integrated into the ControlLogix software and controller.
This significantly reduces the time and costs for integrating, programming, and main-
taining a robot in a system. The robot can be programmed in simple Cartesian coor-
dinates because the controller handles the kinematic transformations. RSLogix 5000
software allows control of two- and three-axis, articulated, independent/dependent,
SCARA, H-bot and delta geometry robots.

A library of Add-On instructions is available to simplify robot program development
and integration.

When developing a new application, we must enter the parameters for each axis of
the robot into the configuration screens. The CLX controller uses this information to do
the transformations.

Having one CLX controller control the whole application enables the system
developer to easily integrate and synchronize a robot’s motion with other parts of the

342 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

application. It makes it much easier to integrate conveyor tracking and vision systems
into an application.

QUESTIONS

B L oo

© P 1> W

10.

List at least three reasons why ball screws are used in motion systems.
What is the function of an over travel switch?
Describe how homing is accomplished in a system.

A system has a ball screw with a pitch of 0.200 inch. There are 4000 encoder counts
per revolution of the ball screw. Calculate the resolution for this system.

What is absolute positioning?

What is incremental positioning?

Describe linear interpolation.

What position information needs to be entered for a circular interpolated move?
What are motion direct commands, and why are they useful?

Describe what needs to be done in a program to enable a drive and close the servo-
loop so that movement can take place.

CHAPTER

114

Risk Assessment and Satety

OBJECTIVES

On completion of this chapter the reader should be able to:

= Explain the purpose of risk assessment and risk reduction.
» Describe some of the standards that apply to risk reduction.
= Perform a risk assessment.

» Explain risk reduction strategies.

THE IMPORTANCE AND COST OF SAFETY

Safety may be the most important part of the manufacturing process. Injuries often hap-
pen when a system is stressed. Downtime and production stress tend to make operators
or maintenance personnel do things they might not ordinarily do to keep production high
or to get a system running. Safety problems can also arise from poor maintenance proce-
dures or poor design that tends to create safety problems. Operators may feel pressure
to keep production up. Maintenance personnel may feel pressure to repair machines as
quickly as possible to get production going. A maintenance person may try quick fixes
or work-arounds to get a machine running. One might see emergency stops or safety
interlocks (light curtains, limit switches, proximity sensors) overridden to temporarily fix
a problem. Quick fixes and work-arounds may get the machine running but can cause
immediate and future safety hazards.

An American Society of Safety Engineers study calculated the ratio of indirect to
direct costs of an industrial accident as high as 8:1. We usually just think of the direct
costs of an accident. We think about the lost time or the cost of repairing the machine.
But the indirect costs can be 8 times greater than these. This means that the costs
associated with accidents are huge.

344 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

RISK ASSESSMENT FUNDAMENTALS

Machine safety is essentially a two-step process: risk assessment and risk reduction. All
machines and systems have risks associated with them. When a new machine is purchased,
one might assume the machine has been designed to be as safe as possible. But risk as-
sessments should be performed on new equipment also. A company might also purchase
machines or attachments that are integrated into/on other machines or equipment. This
can create new risks, so a risk assessment should be performed. Some companies design
and build their own equipment. Risk assessment must be performed. If accidents or close
calls occur, a risk assessment should be carried out. These risk assessments are done to
identify potential safety hazards.

There can be many hazards present on industrial equipment. Risks include the op-
erator being exposed to hazards such as cutting, crushing, shearing, clamping, trapping,
perforating, puncturing, risking shock, noise, heat, slipping and falling, and so on. Where
necessary, additional protective measures must be implemented to protect operators and
other individuals from these and other types of hazards.

Note that in the United States, the responsibility for protecting personnel falls on the
end user because of Occupational and Safety Health Administration (OSHA) guidelines.
Only in the last few years have consensus standards begun to explicitly require risk as-
sessments by machine builders. Such standards include ANST PMMI B155.1-2006, ANSI
RIA 15.06-1999, and ANSI B11-2008.

Risk Assessment

To aid the machine manufacturer with the task of risk assessment, there are stan-
dards that define and describe the process of risk assessment. A risk assessment is
a sequence of logical steps that permits the systematic analysis and evaluation of
risks. The machine is designed and built taking into account the results of the risk
assessment.

Risk reduction follows a risk assessment, when necessary, by applying suitable pro-
tective measures. New risks shall not result from the application of protective mea-
sures. The repetition of the entire process, risk assessment and risk reduction, may
be necessary to eliminate hazards as far as possible and to reach residual risk that is
tolerable.

ANSI B11.TR3-2000

The American National Standards Institute (ANSI) developed ANSI B11.TR3-2000,
Risk Assessment and Risk Reduction--A Guide to Estimate, Evaluate and Reduce Risks
Associated with Machine Tools. ANSI B11.TR3-2000 calls for risk assessment and reduc-
tion of risk through a systematic review. Many hazards are missed during machine design
because task identification and risk assessment are not part of the process. ANSI B11.
TR3 came out in late 2000. The ANSI B11.TR3-2000 standard puts the responsibility

CHAPTER 14—RISK ASSESSMENT AND SAFETY 345

on machine manufacturers and users. It brings U.S. standards in line with European/
International standards.

There is no industry or government requirement that mandates that the content of
ANSI B11.TR3 be followed. The current OSHA regulations provide no methodology to
address machine hazards and risks. Risk assessment is, however, already part of robotic
standards (ANSI/RIA-1999, “Industrial Robots and Robot Systems”).

Task-based risk assessment and reduction involves the following:

1. Determine the machine limits.

Identify all machine tasks.

Identify hazards associated with each task.

Rate the severity.

Rate the probability for each hazard.

Determine the level of risk.

Eliminate the hazard or reduce its severity.

Determine the type of safeguarding and performance level of the system neces-
sary to achieve the desired risk level.

@ N o Utk W

Tolerable risk is the term used to refer to a level of residual risk for a given hazard
after applying risk reduction measures. ANSI B11.TR3-2000 defines tolerable risk
as: risk that is accepted for a given task and hazard combination. Lately more focus is
being directed at integrating safety into all phases from womb to tomb of a machine
life cycle.

Acceptable risk is a newer term that is beginning to appear in updated standards.
It more clearly represents the implied intent of evaluation and mitigation. The as-
sumption is that risk can never be totally eliminated from a hazard but that every
risk should be evaluated for risk reductions and mitigated to the smallest amount
possible. Therefore, more current standards are defining acceptable risk as the level
at which further risk reduction will not result in significant reduction in risk or that
additional expenditure of resources will not result in significant advances toward
increased safety.

ANSI B11.TR3-2000 makes it clear that although zero risk does not exist and cannot
be attained, a “good faith approach” to risk assessment/risk reduction should achieve a
tolerable risk level. This level may not be the same for every company. Risk is often de-
fined with three major elements: frequency, probability, and severity. In other words how
often someone is exposed to the hazard, how likely they are to become injured, and how
bad the injury is likely to be. The idea is to reduce or eliminate exposure to all recognized
hazards.

In a risk assessment following the ANST B11.TR3-2000, standard ratings are chosen
for severity, frequency, and probability. The first is severity. Severity is a measure of how
bad the potential injury might be. The severity of harm or injury is rated in terms of
minor, serious, major, or fatal. Figure 14-1 shows the ratings. A minor rating would get
1 point, while a fatal rating would get 10 points.

346 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Ratings
Severity Rating ‘ Effects
10 Fatal
6 Major — normally irreversible, permanent disability, e.g., loss
of sight, amputation
3 Serious — normally reversible, cuts, broken bones, burns
1 Minor bruising, cuts, first aid care

Figure 14-1 Severity rating table.

The second factor to be rated is the frequency of exposure to the hazard. Frequency
is rated in terms of seldom, occasional, or frequent. Figure 14-2 shows the ratings for the
three potential frequencies of exposure.

Frequency Rating ‘ Frequency

4 Frequent — several times per day
2 Occasional — daily

1 Seldom — weekly or less

Figure 14-2 Frequency rating table.

The third rating factor deals with the probability of the injury occurring. The rating
factors are unlikely, possible, probable, or certain. Figure 14-3 shows the ratings.

Probability Rating Probability
6 Certain

4 Probable

2 Possible

1 Unlikely

Figure 14-3 Probability rating table.

The severity, frequency, and probability ratings are then added and other factors are
considered. If more than one person is exposed to the hazard, the number of people is
multiplied by the severity factor. If a person spends more than 15 minutes per access in the
danger zone without lockout/tagout protection, 1 point is added to the frequency factor.
If the operator is unskilled or untrained, 2 points are added to the total. The total is then
compared to a ratings scale. Figure 14-4 shows an example. In this example the ratings
were added and the total was found to be 9. A 9 on the chart represents a medium risk.

CHAPTER 14—RISK ASSESSMENT AND SAFETY 347

Severity of Injury _— =]

e
/ 15 _
| [: : High| ¥ —
Minor Serious Major Fatal g | AddAny
- g | Additional
Probability of Injury "n —
0 — Factors
Medium g : Occasiona
T —
6 —
5 — Probable
Unlikely Possible Probable Certain 4 —
low| 3 —
Frequency of Exposure 3 : Serious

Seldom Occasional Frequent

ANSI B11.TR3-2000 Risk Assessment/Risk Reduction
Figure 14-4 Rating risk.

Risk Estimation Example

Imagine a metal stamping machine. Figure 14-5 shows a stamping machine with an
operator removing a completed part. Depending on how the machine is designed, an
operator could have very different potential injuries. On some machines there may be
a danger of the operator losing an arm if an arm is in the way of the machine’s mov-
ing parts in a cycle. On another machine the most danger might be getting their finger
trapped during a cycle.

348

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

‘b

Figure 14-5 A metal stamping machine.

One machine may have more than one access point, each having different potential inju-
ries associated with them. Different measures for safety control could be used for each. For
example one area of potential contact might be eliminated by putting a non-removable guard
in place. Another area might require safety devices and interlocks such as a light curtain.

Let’s rate the risk for the stamping machine. The possibility of losing an arm would
be irreversible and would be rated a 6 for severity (see Figure 14-1). The frequency
rating would have to be a 4 because the operator is exposed to the risk frequently (see
Figure 14-2). A probability rating of 2 was given because the injury was rated possible
(see Figure 14-3). The total would be 12 (6 + 4 + 2). The rating scale in Figure 14-4
would show that a 12 would be a high-risk level.

ANSI B11.TR3 Safeguarding

ANSI B11.TR3 describes a hierarchy of four levels of safeguarding that can be applied,
depending on the level of risk reduction needed for that machine.

Hierarchy of Hazard Controls

= Eliminate, by design.
= Control access to exposures by safeguarding.
= Provide other safety measures, like awareness barriers, signals, and so on.

= Institute administrative controls, procedures, and personal protective equipment
(PPE).

EUROPEAN SAFETY STANDARDS, EN ISO 12100-1

EN ISO 12100 is a European safety standard that covers the “Safety of Machinery — Basic
Concepts, General Principles for Design.” Part 1 of the standard covers “Basic Terminology,
Methodology,” and Part 2 covers “Technical Principles.”

There are three main clauses in Part 1 in addition to explaining the scope of the stan-
dard and normative references.

CHAPTER 14—RISK ASSESSMENT AND SAFETY 349

Clause 3 of EN ISO 12100-1 covers terms and definitions.

Clause 4, “Hazards to be taken into account when designing machinery,” is a check-
list of hazards, including mechanical, electrical, and thermal hazards, hazards generated
by noise or vibration, and so on.

Clause 5 of EN ISO 12100-1 is the “Strategy for risk reduction.” Subclause 5.1.3 lays
out the basic steps to be taken in a risk assessment.

= Specify the limits and the intended use of the machine.

» Identify the hazards and associated hazardous situations.

= Estimate the risk for each identified hazard and hazardous situation.

= Evaluate the risk and take decisions about the need for risk reduction.

= Eliminate the hazard or reduce the risk associated with the hazard by protective
measures.

Another standard, ISO 14121-1:2007, provides guidance on the information that is re-
quired to perform a risk assessment. Procedures are described for identifying hazards and es-
timating and evaluating risk. The standard also provides guidance on decisions relating to the
safety of machinery and on the type of documentation required to verify the risk assessment.

EN ISO 14121-1:2007, “Safety of machinery—Risk assessment,” Part 1: “Principles,”
also provides a more detailed list of hazards and hazardous situations. ISO 14121-1:2007
establishes general principles intended to be used to meet the risk reduction objectives in
ISO 12100-1:2003, Clause 5.

Figure 14-6 shows a flowchart for performing a risk assessment and risk reduction
for a machine or system, based on safety standard EN ISO 14121. Note that it is an it-
erative process.

Risk Assessment - EN ISO 14121

Start]— » Machine Functions (Definition of Limits)

v
Identification of Hazards

v
Risk Estimation

\ 4
Risk Evaluation

X

- Risk Reduced Appropriately? - °»/ End

o

Risk Reduction

Figure 14-6 A flowchart for risk assessment and risk reduction.

350

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

RISK ASSESSMENT

A team approach is recommended for risk assessment studies. Operators, maintenance
personnel, engineering, and other appropriate personnel should be involved in risk
assessment studies. Each will have a different perspective on the machine and will be able
to provide insight on potentially hazardous conditions. The assessment process needs to
cover the entire life cycle of the machine — design to discard.

Machine Limits

The process of performing a risk assessment begins with studying the machine or sys-
tem. This is often called defining the limits of the machine. It has to do with studying the
functions and operation of the machine. Following are some considerations that should
be taken into account in machine limits:

» The intended use of the machine, production rates, cycle times, materials used,
and so on

= Range of movement of the machine, physical boundaries, the expected place of
use, and so on

= Noise, temperature, humidity, and so on

= Maintenance and wear of tools, fluids involved, and so on

* Other machines, auxiliary equipment, energy sources, and so on

* Malfunctions and faults that are to be expected

= The correct use of the machine and also the unintentional actions of the operator
or the reasonably foreseeable misuse of the machine or system

Once the machine limits of the machine or system have been defined, the next step
in the process is to identify the various tasks and associated hazards associated with oper-
ating the machine.

Determining the Necessary Safety Level

This entails a risk estimation analysis for each task and its associated hazard(s). There are
a variety of standards and approaches that have been developed for risk estimation.

Risk estimation methods are used to determine the probability of occurrence of
harm, the exposure to the hazard, the ability to avoid injury, and the seriousness of the
potential injury. Figure 14-7 shows a simple illustration of risk estimation. Risk is equal to
the extent of the potential injury multiplied by the probability of its occurrence.

Risk Estimation

Risk | = | Extent of Injury | % | Probability of Occurrence

Figure 14-7 Risk estimation.

CHAPTER 14—RISK ASSESSMENT AND SAFETY 351

Safety standards were created to help designers in the definition of categories for
safety-related control. The following categories are often used to assess risk:

= The possible severity of injury (S)
* The frequency or duration of exposure to the hazard (F)
» The possibility of preventing the hazard (P)

The diagrams shown in Figures 14-8 and 14-9 show one method for classifying risk in
accordance with safety standards EN 954-1. EN 954-1 was used until 11/29/2009. It has
been superseded by EN ISO 13849-1.

Let’s consider the stamping machine example again. Figure 14-8 shows the severity,
frequency, and possibility of avoidance factors for EN 954-1. The severity of potential
injury is considered first. In our example, an operator has to load and unload parts into a
stamping machine. The operator could lose a hand if it were in the machine during the
operation. This is a serious injury—normally irreversible, fatal, or requiring more than first
aid—so S2 would be chosen for the severity level (see Figure 14-8).

Next we need to consider the frequency. The operator has to make several pieces
per hour. This would be considered frequent exposure so F2 would be chosen for the
frequency factor (see Figure 14-8).

The last thing to be considered is the possibility of avoiding the hazard. The moving
ram that punches the metal on the machine is very fast so it is unlikely the operator can
move out of the way. Thus a factor of P2 is chosen (see Figure 14-8).

S Severity of ‘

the Injury
S1 Slight Injury: normally reversible, requires only first aid
S2 Serious injury: normally irreversible, fatal or requiring more than first aid

F Frequency (or duration of the
exposure to the hazard)

F1 Infrequent: Typical exposure to hazard is less than once
per hour.

F2 Frequent: Typical exposure to hazard is more than once
per hour.

P Possibility of avoiding ‘

the hazard

P1 Likely: Can move out of the way or sufficient warning/response
time or the robot speed is less than 250 mm/second.

P2 Not likely: Cannot move out of the way or inadequate response
time or the robot speed is greater than 250 mm/second.

Figure 14-8 Risk classification based on ANSI R15.06-1999.

352

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

When these factors are applied to the decision tree in Figure 14-9, we see that this
would require a category 4 solution. This applies to the EN 954-1 standard’s method. In

EN 954-1 categories are used to describe the level of safety requirements that should be
followed.

Severity of Frequency Possibility of
injury and/or avoiding the
-l exposuretime hazard
S rstlel\slggrtéible ::othelr:jazar;i P,: possible
S,: serious, jseldomto o
o ; : scarcely
fatality gggjéo?ﬂen 2 possible
short
F,:frequent to
continuous
S, and/or long o %
S =
Start P, g
— F —> —
B —
SZ Ll
2 — %
F, > =
P2 > -E”
tal T

Figure 14-9 The EN 954-1 method of risk estimation and safety category selection. This is
also called the risk graph.

EN 954-1 sets five safety system classifications depending on the level of assessed risk.

Category B is the first. Category B has no special requirements for safety. It requires
that designers follow good design practices and choose components that are consistent
with the parameters of the application. Category B forms the base requirements for the
rest of the categories.

Category 1 is concerned with the prevention of faults. The principles of cate-
gory 1 can be complied with by the use of suitable design principles, materials, and
components.

Categories 2, 3, and 4 require that faults that cannot be prevented must be detected
and appropriate actions taken. Category 2, 3, and 4 systems monitor and check safety
critical functions. Redundancy is one of the more common ways of monitoring. Critical
safety functions are duplicated, monitored, and compared to assure they are operating
correctly.

Categories 2 and 3 allow a single fault in the safety circuit to lead to the loss of the
safety function.

Category 3 improves on category 2 and requires that a single fault not lead to the
loss of the safety function. Category 3 does not, however, require that all faults be
detected. An accumulation of undetected faults that could lead to the loss of safety
function is permitted. Appropriate steps must be taken to minimize the possibility of
occurrence.

Category 4 requires that there be no loss of safety function with an accumulation of
multiple faults.

Figure 14-10 explains the five categories in more detail.

CHAPTER 14—RISK ASSESSMENT AND SAFETY 353

safety category B. In addition the safety system must be
designed so that a single fault will not result in the loss of

the safety function and will be detected at or before the next
demand on the safety system. If this is not possible, then the
accumulation of multiple faults must not lead to the loss of the
safety function.

This requires redundancy in the safety monitoring device and
the use of dual-channel monitoring of input and output devices
such as E-stop pushbuttons, machine guard interlocks, safety
relays, etc. Here the application, technology used, and system
architecture will determine the number of allowable faults.

Category ‘ General Safety Requirements Safety System Behavior

B The safety system is designed to meet the operational A single fault or failure of a
requirements and to withstand expected external influences. component in the safety system
Category B requirements are usually satisfied by selecting can lead to the loss of the safety
components that are compatible with the application function.
conditions, e.g., load, temperature, voltage, etc.

1 Category 1 safety systems must meet the requirements of A single fault or failure of a
safety category B and must also employ well-tried principles component in the safety system
and components. can lead to the loss of the
Well-tried principles include safety function. Well-tried safety
Reduction of probability of faults, for example, overrated principles and components are
selected components, overdimensioned components for used to increase the reliability of
structural integrity, etc. the safety system.

Avoidance of certain faults, such as short circuits

Detection of faults early, ground fault protection, for example
Assurance of mode of the fault, for example, ensuring an open
circuit when it is vital that the power be interrupted or unsafe
conditions arise

Limitation of the consequences of a fault

2 Category 2 safety systems must meet the requirements of A single fault or failure of a
safety category B. Additionally, the machine shall be prevented | component in the safety system
from starting if a fault is detected upon the application of can lead to the loss of the safety
machine power, or upon periodic checking during operation. function. Periodic checking
The requirement suggests the use of a safety controller with may detect faults and permit
a startup test. Single-channel operation is permitted provided timely maintenance of the safety
that the input devices are tested for proper operation on a system.
regular basis. Input devices would include emergency-stop
(E-stop) pushbuttons, machine guard interlocks, etc.

3 Category 3 safety systems must meet the requirements of A single fault or component failure
safety category B. In addition the safety system must be in the safety system will not lead
designed so that a single fault will not result in the loss of to the loss of the safety function
the safety function. Where practical, the single fault will be and, where possible, will be
detected. detected. Some but not all faults
This requires redundancy in the safety monitoring device and will be detected. An accumulation
the use of dual-channel monitoring of input and output devices | of undetected faults can lead to
such as E-stop pushbuttons, machine guard interlocks, safety the loss of the safety function.
relays, etc.

4 Category 4 safety systems must meet the requirements of A single fault or component failure

in the safety system will not lead
to the loss of the safety function,
and it will be detected in time

to prevent the loss of the safety
function. If detection of the fault is
not possible, then an accumulation
of faults will not lead to the loss

of the safety function. Faults will
be detected in time to prevent the
loss of safety functions.

Figure 14-10 Safety requirements and system behavior.

354

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

The EN ISO 13849-1 standard has succeeded the EN 954-1 standard. EN ISO
1389-1 also uses a risk graph to determine the necessary safety level. The parameters
S, F, and P are used to determine the magnitude of the risk the same as they were in
EN 954-1. The difference is that the result of the analysis is a required performance
level (PLr). The performance level is defined in five discrete steps: a, b, ¢, d, and e (see
Figure 14-11).

Severity of Frequency and/or Possibility of

injury duration of the avoiding the
S.: slight exposure to the hazard or limiting
S" : hazard the injury
2: Serlous F,: seldom/short P;: possible
F,: frequent/long P,:scarcely possible
P, %
E =
1 P, §
S|
Start
—
SZ
x
]
ey
=
T

Figure 14-11 A risk graph based on EN ISO 13849-1.

IEC/EN 62061

The IEC/EN 62061 standard is another widely used safety standard. IEC/EN 62061
is named the “Safety of Machinery — Functional Safety of Safety Related Electrical,
Electronic and Programmable Electronic Control Systems.” The functional require-
ments used to determine a safety level with this standard’s method include details
like frequency of operation, required response time, operating modes, duty cycles,
operating environment, and fault reaction functions. The safety integrity requirements
are expressed in levels called safety integrity levels (SILs). The SILs are the approxi-
mate equivalent of categories in EN 854 and performance levels in EN ISO 13849-1.
Figure 14-12 shows an approximate comparison between the safety levels of the three
methods. Note that the SILs and categories and performance levels may be compared
but are not equivalent. For example, 62061 and 13849 can be applied to electronic
components but 62061 has no means of defining SIL ratings for hydraulic and pneu-
matic components.

CHAPTER 14—RISK ASSESSMENT AND SAFETY 355

EN ISO 13849-1 EN 954-1 EN 62061
Performance Level (PL) Categories Safety Integrity Levels (SIL)
Performance Level a/b Category B/1

Performance Level b/c Category 2 SIL 1
Performance Level c/d Category 2/3 SIL1
Performance Level d/e Category 3 SIL2

Performance Level e Category 4 SIL3

Figure 14-12 An approximate comparison of EN ISO 13849-1, EN954-1, and EN 62061
categories.

RISK REDUCTION

The goal of risk reduction, according to safety standards, is to reduce risk to personnel to
a tolerable level. The responsibility for the definition of a tolerable level of residual risk
rests on the decision of the owner of the machine.

If the risk evaluation shows that measures are necessary to reduce the risk, the
three-step method shall be used. The machine manufacturer shall apply the following
principles during the selection of the measures and in the following order:

= The first step is a safe design. The design should eliminate or minimize residual
risks as far as possible in the machine or system.

= The second step is technical protective measures. Necessary protective measures
must be used against risks that cannot be eliminated by design.

* The third step is the provision of information to users on residual risks.

General principles on the process of risk reduction are covered in: EN ISO 12100,
12. Figure 14-13 shows a three-step risk reduction method as a decision tree. Note the
first step would be to ask if the safe design adequately reduced the risk. If yes, we would

356

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

need to make sure that no new hazards resulted from the design. If safe design did not
adequately reduce the risk, we would need to implement protective measures such as a
light curtain or other protective measures. Then we would need to decide if the protective
measures adequately reduced the risk. If the answer were yes, we would need to make
sure that no new hazards were created by the additional protective measures. Lastly, we
would look at providing information to users about any residual risk. If information to
users adequately reduced the risk, we would just need to make sure that no new risk was
created. If user information did not properly reduce the risk, the risk reduction process
would have to be repeated.

Start

Risk redudion through safe design

Has the risk
been properly reduced

Risk reduction by means of protective measures l

Has the risk Yes

Yes

been properly reduced

Risk reduction by means of user hformation]

Has the risk Yes
been properly reduced

No

End
study new
hazard

Repeat Process
of risk assessment

Figure 14-13 Risk reduction method.

Risk reduction strategies are shown in more detail in the table in Figure 14-14.
The table shows five strategies and examples of how each might be used to reduce

risk.

CHAPTER 14—RISK ASSESSMENT AND SAFETY 357

Risk Reduction Strategy Examples

Changes in machine design = Reduced or eliminated human interaction
Eliminated pinch points
Automated material handling

Engineering controls (safeguarding
technology)

Mechanical hard stops
Barriers

Interlocks
Presence-sensing devices
Two-hand controls

Awareness Lights, beepers, horns
Computer warnings
Signs, labels

Restricted space painted on the floor

Training and procedures Safety procedures
Equipment safety inspections
Training

Lockout/tagout

Personal protective equipment Safety glasses
Ear plugs
Face shields

Gloves

Figure 14-14 Risk reduction strategies.

SUMMARY

There are standards that define and describe the process of risk assessment. A risk assess-
ment is a sequence of logical steps that permit the systematic analysis and evaluation of
risks. The machine shall be designed and built taking into account the results of the risk
assessment.

Risk reduction follows a risk assessment, when necessary, by applying suitable pro-
tective measures. New risks shall not result from the application of protective mea-
sures. The repetition of the entire process, risk assessment and risk reduction, may
be necessary to eliminate hazards as far as possible and to sufficiently reduce the risks

identified.

QUESTIONS

1. True or False: OSHA guidelines place the responsibility for machine safety on the
end user.

2. Describe the process of risk assessment according to ANSI B11.TR3-2000.
3. What is the difference between tolerable risk and acceptable risk?

358

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

4.

A machine task was studied and found to have a risk of injury associated with it. The
injury was evaluated for its potential severity. It was decided that it could result in
cuts or even a broken arm. The operator was exposed to the hazard about three times
a week. It was determined that the probability rating for being injured was possible.
What would the rating be using ANSI B11.TR3-2000?

ANSI B11.TR3-2000 specifies four levels of safeguarding that can be applied, de-
pending on the level of risk reduction. What are they?

What are machine limits?

Describe the S, F, and P factors that are used in a basic risk assessment.

EN 954 uses categories to describe the necessary safety level. What does EN ISO
13849-1 use?

. What does SIL stand for?
10.
11.

Describe the three-step method for risk reduction.
Risk assessment and risk reduction is an iterative process. Explain.

CHAPTER

115

Safety Devices for Risk Reduction

OBJECTIVES
On completion of this chapter the reader should be able to:
= Describe machine guarding.
» Describe the operation of a safety relay.
= Explain terms such as safety relay, ESPE, force guided, and so on.

Describe the use of safety switches, light curtains, and laser scanners for
safeguarding.

Explain the function of a safety controller.

INTRODUCTION

Safety is becoming an ever-increasing part of the technician’s job responsibilities. It
is imperative that the technician understand the role and importance of safety in the
workplace as well as the devices that can help reduce the risks inherent in automated
equipment. This chapter focuses on the safety technology that is available to reduce
risk in the workplace.

STANDARDS
ANSI B11 2008

One of the standards that defines safety for machines is the ANSI B11 2008, “General
Safety Requirements Common to ANSI B11 Machines.” The ANSI B11 2008 safety
standard applies to new, modified, or rebuilt power-driven machines, not portable by

360 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

hand and used to shape or form metal or other materials by cutting, impact, pressure,
electric or other processing techniques or a combination of these processes. The table in
Figure 15-1 shows the subsections for ANSI B11 and the machines they apply to.
These are very useful when developing risk reduction strategies for particular types of

equipment.
ANSI B11.1 Safety Requirements for Mechanical Power Presses
ANSI B11.2 Safety Requirements for Construction, Care, and Use of Hydraulic Power Presses
ANSIB11.3 Safety Requirements for Power Press Brakes
ANSI B11.4 Safety Requirements for Shears
ANSIB11.5 Safety Requirements for Construction, Care, and Use of Ironworkers
ANSI B11.6 Safety Requirements for Manual Turning Machines with or without Auto Control
ANSI B11.7 Safety Requirements for Construction, Care, and Use of Cold Headers and Cold Formers
ANSI B11.8 Safety Requirements for Manual Milling, Drilling, and Boring Machines
ANSI B11.9 Safety Requirements for the Construction, Care, and Use of Grinding Machines
ANSI B11.10 Safety Requirements for Metal Sawing Machines
ANSIB11.11 Safety Requirements for Gear and Spline Cutting Machines
ANSI B11.12 Safety Requirements for Roll Forming and Roll Bending Machines
ANSIB11.13 SafetY Requirements for Single- and Multiple-Spindle Automatic Bar, and Chucking

Machines

ANSI B11.14 Coil Slitting Machines - Safety Requirements for Construction, Care, and Use
ANSI B11.15 Safety Requirements for Pipe, Tube, and Shape Bending Machines
ANSI B11.16 Safety Requirements for Powder/Metal Compacting Presses
ANSI B11.17 Safety Requirements for Horizontal Hydraulic Extrusion Presses
ANSI B11.18 Safety Requirements for Machines Processing or Slitting Coiled or Non-coiled Metal
ANSI B11.19 Performance Criteria for Safeguarding
ANSI B11.20 Safety Requirements for Integrated Manufacturing Systems
ANSI B11.21 Safety Requirements for Machine Tools Using Lasers for Processing Materials
ANSI B11.22 Safety Requirements for Turning Centers and Automatic NC Turning Machines
ANSI B11.23 :s;e’éyol:(iigu'\iﬂrzgc?:;ssfor Machining Centers and Automatic NC Milling, Drilling,
ANSI B11.24 Safety Requirements for Transfer Machines
ANSI B15.1 Safety Standards for Mechanical Power Transmission Apparatus
ANSI/ISO 12100-1 | Safety of Machinery—-Basic Concepts, General Principles for Design Part 1
ANSI/ISO 12100-2 | Safety of Machinery—Basic Concepts, General Principles for Design Part 2

Figure 15-1 Safety standards for machines.

CHAPTER 15—SAFETY DEVICES FOR RISK REDUCTION 361

Electrosensitive Protective Equipment (ESPE) Standards

Light curtains, laser scanners, photosensors, and other devices have been used for many
years in machinery-related safety applications. These devices and others are referred to
as electrosensitive protective equipment (ESPE). Requirements governing the use of
ESPE have been specified in a number of different national regulations and standards
including the new international standard IEC 61496. ESPE can be used for a variety of
safety functions.

They can be used to prevent an operator’s fingers, hands, or arms from entering a
hazardous part of a machine, to scan the path of an automated vehicle, or to encircle and
safeguard an area around an industrial robot. In each of these applications, the ESPE
will produce an output signal(s) when a person or an object comes within the detection
zone; the dangerous movement of the machine can then be stopped or reversed. Such
equipment has long been subject to national regulations and standards, but over the past
several years it has become clear that an international framework of safety requirements
and a recognized terminology are also badly needed.

The IEC established standards for electrosensitive protective devices. IEC 61496
“Safety of Machinery—Electrosensitive Protective Equipment” is accepted as the default
standard for ESPE. The standard includes light curtains, laser scanners, and so on.
Underwriters Laboratories (UL) adopted the IEC 61496 standard into their own UL
standards.

SAFETY CONSIDERATIONS

There are three main safety considerations when a new machine is designed or if existing

machinery is upgraded.

= The design of safety should be done with maintenance in mind.

= Interlocking principles and devices must be considered.

= Safety controls and the use of safety PLCs must be considered to prevent the
machine from injuring personnel, the operator from damaging the machine, or the
machine from damaging itself.

SAFEGUARDING METHODS

There are many ways to safeguard machines. Things that must be considered include the
layout of the work area; the type of operation; the workpiece size, material, weight, and so
on; the method of handling; and the production requirements. These and other consider-
ations will help determine the appropriate safeguarding methods for the machine.

In general, power transmission components are most effectively protected by fixed
guards that enclose the danger areas. There are several possible safeguarding methods
for hazards located at machine access points where moving parts perform work on stock.
When selecting a safeguarding method, you must always choose the most effective and
practical one that is available.

362

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Guarding

According to definitions found in ANSI B11 safety standards for metalworking machine
tools, a guard is used to prevent a person from reaching over, under, around, or through
the machine, avoiding both intentional and unintentional access to hazardous machine ar-
eas. A shield only prevents unintentional contact with hazardous machine areas. Awareness
barriers are better than a yellow warning line on the floor because they take an intentional
effort to get beyond. Warning barriers include things like a railing, a chain, or a cable sus-
pended at waist height.

Guards are mechanical barriers that can be used to prevent access to hazardous
areas. There are four general types of mechanical guards.

Fixed Guards
Fixed guards are designed to be permanently mounted on the machine. Fixed guards
are typically constructed of sheet metal, bars, screen, plastic, or other material that
is durable enough to stand up to impacts they may experience. Fixed guards are
usually preferred over other types of guards because of their low cost, simplicity,
and effectiveness. A properly designed fixed guard can provide the most protection.
Maintenance is usually minimal for fixed guards. Fixed guards can usually be de-
signed and made in the plant.

There are a few disadvantages to fixed guards. Fixed guards can interfere with
visibility.

Machine adjustment and repair may require that the guard be removed, thus requiring
additional protection for maintenance personnel.

Adjustable Guards

Adjustable guards provide a barrier that can be adjusted to meet different product re-
quirements. Adjustable guards can be adjusted to admit varying sizes of stock, and they
can be designed to meet the needs of a variety of applications. Disadvantages of adjust-
able guards include the guard may be made ineffective by the operator, it may affect
visibility of the machine, it may be possible for hands to enter the hazardous area, it may
not provide complete protection at all times, and it may require frequent adjustment and
maintenance.

Self-Adjusting Guards

Self-adjusting guards move to adjust the stock size and still protect the operator. The
safety guard on a table saw moves up and down as a piece of wood is cut to adjust for
the thickness of the wood and allow the wood to go through and at the same time pre-
vent the operator from getting her or his fingers or hand in the blade. The openings of
self-adjusting guards are determined by the movement of the stock. On a table saw, as
the operator moves the wood into the hazard area, the guard is pushed up, providing an
opening which is only large enough to admit the wood. After the wood has been pushed
through the saw blade (cut), the guard returns to the rest position. A self-adjusting guard
protects the operator by placing a barrier between the hazard area and the operator.

CHAPTER 15—SAFETY DEVICES FOR RISK REDUCTION 363

Advantages of self-adjusting guards include they provide a barrier that moves
according to the size of the stock entering the hazardous area and they may be com-
mercially available off the shelf. Disadvantages of self-adjusting guards include they do
not always provide maximum protection, they may interfere with visibility, and they may
require frequent maintenance and adjustment.

Interlocked Guards

The machinery used in discrete manufacturing usually has many moving parts and mech-
anisms. Moving parts can injure personnel. Protective measures must be implemented
to protect the worker and the machine from the moving devices. A safety design team
should consist of operators, personnel responsible for safety, maintenance personnel, and
engineering personnel. Simplest is not always best. It may be a simple to use a limit switch
to detect whether a guard door is open. But standard limit switches are easy to cheat and
also prone to failure. An operator can actuate the limit switch with his or her hand or duct
tape and override the safety. New safety hardware can reduce the possibility of operators
cheating the safety features of a system.

An interlocked guard has sensors or switches that link the guard into the safety cir-
cuit. If an interlocked guard is opened or removed, the tripping mechanism is activated or
power is automatically shut off or disengaged, and the machine cannot run or be started
until the guard is back in place. Interlocked guards can provide the maximum protection,
and they allow access to a machine without the removal of fixed guards. This can save
time. The interlock should require the machine to be stopped before the worker can
reach into the hazardous area.

There are three categories of stop functions.

= Category 0 is an uncontrolled stop by immediately removing power to the ma-
chine actuators.

= Category 1 is a controlled stop with power to the machine actuators available to
achieve the stop and then removed when the stop is achieved.

= Category 2 is a controlled stop with power left available to the machine actuators.

An interlocked guard may use mechanical, hydraulic, pneumatic, or electric power
or any combination for the interlock. Replacing the guard should not automatically re-
start the machine. Movable guards should be interlocked to prevent hazards. This should
make sense; if the operator can move the guard, she or he might forget or leave it open
on purpose and the hazard would not be prevented.

Switches for Guard Interlocking

Safety limit switches used for guard interlocking must meet special requirements. The

requirements are listed in standards EN 60 204-1, EN 1088, and EN 60947-5-1, “Control

Circuit Devices and Switching Elements: Electromechanical Control Circuit Devices.”
The placement and design of safety switch interlocks must protect them from

inadvertent operation, damage, and changes in position. The switch and the control cam

(key) must be secured by its shape, not by force.

364

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Switches used for safety interlocking must be protected by their actuation method,
or their integration in the control must be such that they cannot be easily bypassed
or jury-rigged. Safety interlock switches must have normally closed contacts for fail
safing.

Safety interlock switches must be mounted so that they are not used as a mechanical
stop for the guard. It must be possible to check the safety interlock switches for correct
operation. If possible, safety interlock switches must be easily accessible for inspection.
Safety interlock switches must be mounted such that they are protected against damage
due to external effects.

Interlocked Guard Design

Guards that are frequently opened or are removed or opened for setup must be inter-
locked with the hazardous movement. It must not be possible to override the interlock
with simple means. In other words, it should not be easy for an operator to use wire, a
magnet, some other tool, or a piece of metal to override the interlock switch.

Ergonomic Considerations for Guards

Ergonomics are also important when designing guards. Guards should not hinder em-
ployees doing their job. Guards should not interfere or slow down activities such as setup,
maintenance, and other similar ones any more than necessary. Employees will not accept
guards that unduly interfere with them or slow them down.

Guards that are only removed or opened for maintenance work or not removed or
opened very often (if they are not interlocked to prevent dangerous movement) must be
fastened to the machine such that they can only be removed with tools.

Guards that are opened for setup or frequently opened must be interlocked with the
dangerous movement. This means that after opening or removing the guard, dangerous
movements come to a stop in a safe amount of time.

In terms of opening guards, frequently means guards are opened at least once per
shift. Locks must be used if hazards are to be expected when the guard is opened. In
other words, locks must be used if it takes a long time for the machine to safely stop after
a guard is removed.

Protection against reaching through the barrier must also be considered. The permis-
sible mesh size (opening) for chain link fence is dependent on the distance between the
fence and the hazardous point. The larger the openings in the fence, the farther the fence
must be from the hazardous point (EN 294). In other words, the safe distance between
the fence and the hazard is much different if a person cannot get a hand through the
fence opening than for a fence that an arm can fit through.

Figure 15-2 shows two examples of the use of a guard (barrier). The one on the
left is unacceptable because it allows fingers to reach the hazardous area. In this
example if the opening in the barrier remained this large, the barrier would have to
be located farther away from the hazardous area. The example on the right is accept-
able because the openings in the barrier are too small to allow a finger to reach the
hazardous area.

CHAPTER 15—SAFETY DEVICES FOR RISK REDUCTION 365

EN 294 not observed EN 294 observed

Figure 15-2 On the left the barrier opening allows a finger to get to the hazardous area.
On the right the openings in the barrier are too small to allow a finger to reach the hazard-
ous area.

The following standards establish requirements for guards: EN 953, is named
“Safety of Machinery Guards” is a standard that establishes general requirements for
the design and construction of fixed and movable guards.

Safeguarding by Location

To safeguard a machine by location, the dangerous moving part of a machine must
be located such that the hazardous areas are not accessible or do not present a haz-
ard to personnel during normal operation. Safeguarding by location can be done
by locating the hazardous parts of the machine away from operator workstations
or other areas where personnel may be present. Walls or fences can be used to re-
strict access to machines. Safeguarding by location is also accomplished by having
the dangerous parts of the machine located high enough to be out of the normal
reach of any worker.

The placement of the operator’s control station is another way to provide safeguarding
by location. If the operator’s control station is positioned properly, the operator cannot be
in the hazardous area while operating the control.

SAFETY DEVICES

Safety has become more complex as manufacturing systems have become more auto-
mated. Until relatively recently machines tended to be small and were run by one operator
who had control and a view of the entire machine. The operator could stop the machine
with one E-stop button. Now, operators may have to tend several locations around larger
manufacturing systems. Several E-stop pushbuttons and other devices might be required
to improve safety. E-stops are limited in protective capability. They require intentional
human action.

Other methods may also be used to protect operators. There are safety devices to stop
the machine if a hand or any part of the body enters the danger area. There are restraint-
type devices to withdraw the operator’s hands from the danger area during operation.

366

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Restraint Devices

The restraint, or holdout, device uses cables or straps that are attached to the operator’s
hands. The cables or straps must be adjusted to let the operator’s hands travel within a
predetermined safe area. The restraints do not allow the operator to move her or his
hands into the danger area. If parts need to be placed into the danger area, tools are
used to place the workpiece. Note that these only protect the operator; no one else is
protected.

Pullback Devices

Pullback devices consist of a set of cables that are attached to the operator’s hands, wrists,
or arms. The cables actually pull the operator’s hands away from the danger area during
the dangerous time in the cycle if the operator has them too close. This type of device is
typically used on machines with stroking action, like a punch press. When the machine
is between cycles, the operator is allowed access. When the slide/ram starts its descent,
a mechanical linkage automatically pulls the cables to keep the operator’s hands away
from the point of operation. Note that these only protect the operator; no one else is
protected.

Safety Trip Controls

Safety trip controls are used to deactivate a machine in an emergency situation. One type
of safety trip control is the safety edge or safety bumper. These are long safety edges
that can be used to detect pressure. A pressure-sensitive safety edge, when pressed, will
deactivate the machine. If the operator or anyone trips, loses balance, or is drawn toward
the machine, pressure to the safety edge will stop the operation. Safety edges must be
positioned so that the machine will be stopped before a part of the operator’s body can
reach the hazardous area.

Safety trip wires are slightly different. Safety trip-wire cables are located around
the perimeter of a work area or near a hazardous area. The operator must be able to
reach the safety trip cable with either hand. The trip wire is normally attached to a safety
switch that is connected to the safety circuit. If the switch is triggered, the machine is
shut down.

Many devices have been developed to increase the safety of machines and systems.
Some of the devices include light curtains, safety mats, safety gate switches, laser scan-
ners, key switches, two-hand switches, and so on.

INTERLOCKING

Power Interlocking

In power interlocking the power source of the hazard is directly interrupted by
the opening of a guard. The mechanical movement of a guard door is interlocked
with the direct switching of the power to the hazard. A trapped key system is one

CHAPTER 15—SAFETY DEVICES FOR RISK REDUCTION 367

method of accomplishing this. This is very difficult for an operator to override with-
out the key.

Control Interlocking

In control interlocking the power source of a hazard is interrupted by switching the
circuit that controls the power-switching device.

E-STOPS

E-stop pushbuttons must be red. The background behind an E-stop should be yellow.
Once an E-stop pushbutton is pressed, it must lock into position before generating the
E-Stop command. This is intended to prevent the potential manipulation of the actua-
tors. Figure 15-3 shows a variety of safety switches.

=
8 -8 =

Figure 15-3 E-stop switches.

When should E-stop pushbuttons be used?
The machinery directive states that E-stop pushbuttons must always be present with only
two exceptions.

= Handheld or hand-guided machines

= Machines in which an E-stop device would not reduce the risk, either because it
would not reduce the stopping time or because it would not enable special mea-
sures that might be necessary

European standard 60204-1 and NFPA 79 distinguish between the types of stop
categories. An E-stop must have priority over all other functions.
Where should E-stop pushbuttons be located?

368 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

A pushbutton must be present at each operator station that can be used to start or control
a dangerous movement. It is also desirable to install E-stop devices on access points such
as operator and safety gates or in areas where there is poor visibility.

ISO EN138490-1 and -2 standards require that, when a group of machines are
working together in a coordinated manner, all E-stop control devices shall be able to
signal an E-stop condition to all parts of the system. In some applications it may be nec-
essary to link the E-stop circuits of stand-alone machines. On integrated machines such
as transfer lines, this requirement is specified in the machinery directive. This means
that upstream or downstream sections need to be incorporated into the main machine’s
E-stop circuit.

Series Connection of E-Stops

Safety requirements can be implemented cost effectively if individual E-stop pushbut-
tons are connected in series. In this method all E-stops in a line are electrically connected
in series and operate with a common monitoring device. This can meet the E-stop push-
button requirements up to Category 4 of EN 954-1. The E-stop is not a primary protec-
tive device like a safety gate. It can be assumed that several E-stop buttons will not be
operated simultaneously. The frequency with which the function is requested can also be
considered low.

Iluminated E-stops should be considered because it is easier to immediately identify
which E-stop has been operated and isolate the problem. Illuminated pushbuttons can
prevent injuries in dark areas by making the E-stop easier to find.

TWO-HAND SWITCHES

Two-hand control requires that the operator apply his or her hands almost simultane-
ously to two switches. Some also require constant, concurrent pressure by the opera-
tor to activate the machine. Two-hand trip devices initiate a machine cycle. Two-hand
control devices must be pressed throughout the machine cycle. With the two-hand
switch, the operator’s hands are required to be on control buttons at a safe location
away from the danger area while the machine completes the dangerous part of its
cycle.

Figure 15-4 shows a two-hand switch that could used on a press-type machine. Both
switches have to be closed to make the press move. This is meant to ensure that the op-
erator’s hand cannot be in the press when the press moves. Originally these would have
been regular switches connected in series. If both switches were down, the press could
move. Operators soon discovered that it might be easier or quicker not to use two hands.
They would use tape and lock one switch on. Then one hand could hit the second switch
and make the press move. This might be quicker, require less effort, and so on. But the
operator has overridden the safety measure. It would be possible to have one hand in the
danger area while the other hand hit the second switch.

CHAPTER 15—SAFETY DEVICES FOR RISK REDUCTION 369

>

Figure 15-4 A two-hand safety switch.

New safety technology was designed to eliminate this possibility. There are two
contacts under each of the switches in the two-hand switch shown in Figure 15-4.
Positively guided (also called force-guided) contacts in each switch are mechanically
interlocked such that two contacts on the relays will not contradict each other, even
in the event that the relay welds. This two-hand switch is designed to be connected to
a safety relay. The safety relay performs several tasks. The first is that it will not allow
the operator to tape one side down and still have the switch work. The safety relay
ensures that both switches must open before they close again or the two safety outputs
of the relay will not be on. The two outputs from the safety relay are used to disable
or enable the system operation. The safety relay also makes sure it receives signals
from both switches within 500 ms of each other. The operator must hit both switches
at almost the same time for the safety relay to accept the inputs and turn on the safety
outputs.

GATES AND GATE SWITCHES

A gate is very similar to a movable guard that protects the operator at the point of
operation before the machine cycle can be started. It may be necessary for the opera-
tor to enter a cell and set a part up for an operation. A gate is included to allow entry
when the machine is not operating to allow setup. The gate is interlocked with the
safety system to prevent the cell from operating when it is opened. The operator must
then be outside of the cell with the gate closed to reset the system to operate. Gates
also prevent other personnel from entering danger areas. Figure 15-5 shows a gate
safety switch.

Figure 15-6 is a table that shows some safeguarding methods as well as their advan-
tages and disadvantages.

370

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

A\
S\

e

Figure 15-5 A gate interlocking safety switch.

Method

Photoelectric

Action

Machine will not start
when the light field has
been interrupted.
Immediate machine
braking is activated.

Advantages

Simple to use.
Protects everyone.
No adjustment is required.

Disadvantages

Limited to machines that can
be stopped at any point in the
machine cycle.

Safety trip controls:
Pressure-sensitive
bar

Safety trip wire
Safety trip rod

Stops the machine
when tripped.

Simple.

Must be manually activated.
May be difficult to activate
controls because of their
location.

Only protects the operator
(may protect others with
proper positioning).

May require special fixtures
to hold work.

May require a machine brake.

Two-hand control

Concurrent use of both
hands is required, thus
preventing the operator
or the operator’s hands
from entering the
hazardous area.

The two-hand control can be
mounted in a safe location
from the hazardous area.
Can be set up so that the
operator’s hands are free to
pick up a new part after the
first half of a cycle is complete
to increase efficiency.

Only protects the operator.
Requires a partial-cycle
machine with a brake.
Some two-handed controls
can be made unsafe by
holding with an arm or
blocking, thereby permitting
one-hand operation.

Gate

Provides a barrier
between the hazardous
area and the operator
and other personnel.

A gate can prevent entry or
reaching into the hazardous
area.

Protects everyone.

Should be inspected regularly.
May interfere with operator’s
ability to see into the cell.

Figure 15-6 Safety methods.

CHAPTER 15—SAFETY DEVICES FOR RISK REDUCTION 371

German automotive engineers developed safety standards in the 1980s that
defined the need for redundancy and monitoring in hazardous areas. The standard was
named VDE 0113 and became the basis for the European safety standards. Europe
was a world leader in the development of safety standards.

SAFETY RELAY

German engineers invented the safety relay. Regular electromechanical relays are not
sufficient for use in safety systems because they are mechanical and will eventually fail.
They can easily fail in an unsafe state. An electromechanical relay may fail without the
operator being aware of it. If the relay is being used in a safety application, it could be
very dangerous for personnel.

Solid-state relays are also not suitable because they depend on power transistors for
their output. Transistors can fail in an open or closed state. If a solid-state relay were to
fail in the on state, an E-stop would not be able to stop the machine. Pilz GmbH and
Company developed the safety relay in 1987. The safety relay they developed was a mul-
tipole relay. It had a combination of three relays that had positive-guided contacts.

Positive guiding means that the mechanical linkage (actuator) works directly on the
switching elements (contacts). The contacts do not rely on spring action to open or close.
Positively guided relays have contacts that are mechanically interlocked such that two
contacts on the relays will not contradict each other, even in the event that the relay
welds.

The first safety relays had two sets of normally open contacts and one set of normally
closed contacts. When the two normally open contacts are closed to energize the circuit,
the normally open set of contacts is forced open. If either of the two sets of normally
open contacts were to weld, the normally closed set of contacts would be forced to stay
open. This would prevent the system from being restarted, because the normally closed
contacts are used to restart the circuit. The failed relay would have to be replaced before
the machine could be restarted.

Figure 15-7 shows some potential safety input devices for one type of safety relay.
On the left of the drawing there is a hand above a normally open switch. This would be
used for a reset switch, which is used to reset the module after a stop condition occurs.
The safety protection devices that could be used are shown around the module. Note
that they are shown as OR. Only one may be used. On the upper left of the diagram
there is a light curtain. A light curtain has two outputs for safety. These can be con-
nected as safety inputs to the safety relay. If the beam is broken between the transmitter
and receiver of the light curtain, the light curtain outputs turn off and the safety module
turns off the two safety relay outputs from the module. For this example, let’s assume
the two outputs from the safety relay are connected to a robot’s E-stop input circuit. If
one or both of the inputs to the robot become false, the robot will stop and prevent mo-
tion. Two are used for safety. Assume now that the obstruction from the light curtain has
been removed. The two outputs from the light curtain will be true. The safety module
will sense that they are true, but will not change the state of the safety outputs so the

372

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

robot is still in an E-stop condition. The safety relay will not energize the safety outputs
until the manual reset switch is closed momentarily. This is also for safety. Imagine if
a person walks through a light curtain into a robot cell. The outputs from the light curtain
go false, the safety relay turns the safety outputs off, and the robot goes into an E-stop
condition. The person is now in the cell and the light is not blocked so the light curtain
outputs are now true. The safety relay does not turn on the safety outputs until it sees the
reset input. This protects the operator and anyone else who wanders into the hazardous
area. The reset switch must be located outside of the danger area and in a position where
a person can see the entire danger area so that he or she does not reset the safety relay
circuit until it is safe to do so. This is an example of perimeter guarding.

®Q

Figure 15-7 A safety relay with some possible safety input devices.

Consider a few of the other safety input devices that could be used with this relay.
The next one in the diagram is a laser scanner. A laser scanner is programmable. The user
can program a protective plane, which can be contoured to fit the area to be guarded,
into the laser scanner. The user can also program a warning area that can be used to warn
personnel that they are getting too close to a dangerous area. Warning areas warn people
not to go further. The second area that can be programmed is the alarm area. If a person
enters this area, the laser’s two safety outputs are turned off. The outputs are inputs to a
safety relay so the safety relay’s two output relays are deenergized.

The next safety device shown is an E-stop switch. Note that it has two contacts. It
would provide two signals to the safety relay. The next device is a mechanical limit switch
with two outputs. The last device shown is a safety mat. Note that it is shown as a nor-
mally open switch. A person must be standing on this mat to have the two outputs on.
Safety relays also are able to check when the two safety inputs come true.

CHAPTER 15—SAFETY DEVICES FOR RISK REDUCTION 373

Study the functional wiring diagram of the safety relay in Figures 15-8 and 15-9. Pins
Al (+24 VDC) and A2 (0 VDC) are used to provide 24 VDC to power the relay. Pins
S21 (—) and pins S11 (+24) and S33 (+ 24) provide DC voltage for control. Pins S34
and S35 can be used for a reset circuit (automatic or manual depending on how they are
wired). The safety outputs from the module are shown as K1 and K2. The relays K1 and
K2 are not wired independently. Look closely and you see that K1 and K2 control a series
contact in each of the output circuits 13-14 and 23-24. Each output circuit has redundant
contacts.

Relays K1 and K2 are not wired independently. K1 and K2 control a series contact in
each of the output circuits 13-14 and 23-24. Each output circuit has redundant contacts.
The safety module also provides another set of output contacts (pins 31 and 32) that can
be used, but they are not safety outputs.

A1l A2 S34 S35 13 238 31

111 I

/| Control-Logic # ¥ \\\i

e one ey
SUPPLY

+ + -
Shabid b b
S21 811 833 S12 S31 822 14 24 32

Figure 15-8 A functional wiring drawing of one type of safety relay.

Inputs from safety devices such as light curtains or safety switches are connected as in-
puts to pins S12 and S31. The wiring controls how the module controls the outputs of the
module. This safety relay can be used in single- and dual-channel applications by using dif-
ferent wiring configurations. It can also be wired for manual reset or for automatic reset.

: Pin Function

A1 | Voltage supply (+24)
A2 | Voltage supply (0 V)

| S11/S33 | + 24V (Control voltage)
. S21 A% (Control voltage)

' S33-S35 | Automatic reset
S33-S34 | Manual reset

i g

S12 Input circuit 1 (K1)
| s31 | Input circuit 2 (K2)
 13-14 | Output contacts 1 (Safe)
| 23-24 | Output contacts 2 (Safe)
| 31-32 | Signal circuit (Non-safe)

Figure 15-9 Safety Relay Terminals. A diagram of a safety relay module is shown on the left.
Note the two rows of four terminals on the top and bottom of the module. Also note the num-
bering of the terminals. K1 and K2 are status LEDs for the state of the output relay contacts.
The pins and their functions are shown in the right two columns. (Courtesy of SICK)

374

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Let’s consider an application that has a single-channel gate switch. Figure 15-10
shows an example of the safety relay and a circuit to accomplish a safety circuit for a
single-channel gate switch. It is shown as a normally closed switch in the diagram. This is
done to help fail-safe the circuit. If the switch fails or a wire is cut, the safety relay would
normally shut the system down because the input would go false. It does not perfectly
protect against failure.

The number one cause of system faults is wiring failure. What happens if there is
a short circuit to + 24 volts between the switch and the safety relay? The relay would
think everything is fine even if the gate were opened. So although using a normally closed
switch helped reduce the possibility of a failure, that would not be safe. It did not elimi-

nate the possibility of failure because it is only single channel and the switch could short-
circuit to + 24 volts.

Manual Reset *\

| | s11 | S33 | S34 | 835 |
] + 1T | T |/
Single 7 m?‘{ {
Channel Safety Relay
Switch = \

0 | chn CH2 /

$21 | s12 | S31 | s22 |

Figure 15-10 A single-channel gate switch connected to a safety relay. Note the
manual reset.

The next example will use a dual-channel gate switch (see Figure 15-11). Note that
the gate switch has two sets of contacts. The safety relay will monitor both outputs to as-
sure a failure cannot occur without being sensed. This diagram also has a manual reset
and monitors two additional contacts in the reset circuit. The K_and K, contacts shown
in the reset circuit are external device monitoring (EDM) contacts from contactor coils
being driven by the outputs of the safety relay. A failure of the driven contactor prevents

the safety relay from resetting. This type of safety configuration should be acceptable up
to a level 4 classification.

CHAPTER 15—SAFETY DEVICES FOR RISK REDUCTION 375

Manual Reset K. Contactor
Kz Monitoring

S34 | S35 'x

+ +‘_1[f';

| -0 | ch CH2

/| s21 | s12 1| s22 ||

Dual Channel '

\Q_
Safety Gate —
Switch

//

With Cross Circuit <
Monitoring

Figure 15-11 A dual-channel gate switch connected to a safety relay. Note the manual reset
and the two contacts that are being monitored in the reset circuit.

THE USE OF OPTOELECTRONIC DEVICES FOR SAFEGUARDING

Optoelectronic safety devices are often a good choice when the risks cannot be eliminated
through design. Optoelectronic safety devices can be used to reduce the risk to a tolerable
level. When an operator is exposed to a hazard in the operation of a machine, a protective
device should be employed to prevent the operator from exposure to dangerous machine
movement.

Light Curtains

Light curtains can be used to either detect or prevent an operator entering or reaching
into a hazardous area on a machine. Optoelectronic safety devices have advantages over
mechanical safeguarding devices such as fixed or movable guards and two-hand control
switches. Opening and closing a mechanical guard takes time. A light curtain requires
much less time than a mechanical movable guard. A light curtain requires much less
access time than any other method. The operator saves time in loading the machine; this
makes the machine more productive.

376

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

A light curtain has two components: a sender and a receiver (see Figure 15-12).
The sender has several emitters that emit infrared light beams. The receiver has many
receivers to sense the emitted light from the sender. When the emitted beams reach the
receivers, the light curtain energizes its two safety outputs.

Interruption of any beam in the light curtain deenergizes the two safety outputs from
the light curtain. The safety outputs from the light curtain can be used as inputs to a con-
trol circuit to stop any hazardous motion or prevent the machine from initiating a start

sequence.
R

Figure 15-12 On the left is a programmable light curtain. On the right is an illustration of a
light curtain showing the transmitter, light beams, and receiver. (Courtesy of SICK)

AT

Light Curtain

Blanking

Muting

Blanking is a term to describe allowing certain beams of a light curtain to be blocked
without turning off the light curtain outputs. For example, we might need to allow two
beams to be blocked by incoming material. This is called fixed blanking. The light curtain
could be programmed to allow these two particular beams to be blocked. The rest of the
beams would still be used to prevent hands or arms from entering the hazardous area.
Not all light curtains have blanking capability. Another term is floating blanking. Some
light curtains can be programmed to allow a certain number of beams to be blocked. For
example, we may need four beams to be blocked to allow the operator to insert a new
part, but the area where the part enters may shift. Floating blanking would allow four
beams to be blocked in any programmed area of the light curtain and still not shut the
machine down.

A light curtain with muting capability enables the safety (protection) function to be tem-
porarily disabled in an application. The disabling of the safety function for a limited
period of time is called muting.

CHAPTER 15—SAFETY DEVICES FOR RISK REDUCTION 377

There are generally two types of applications where muting is required. The first is to
permit materials for production to enter a cell while at the same time preventing person-
nel from entering. An example would be to allow a pallet to enter the hazardous area, but
prevent personnel from entering the area. The second is to permit personnel to access
the hazardous area during the nonhazardous portion of the production cycle. An example
would be removing a workpiece or setting up the next workpiece after a cycle. When
used properly, muting can help speed up industrial processes and still protect personnel
from hazardous situations. Machine control systems that initiate muting must be control
reliable. Figure 15-13 shows the use of pattern recognition to detect the difference be-
tween a pallet and a person.

Figure 15-13 A palletizer, which uses pattern recognition to detect the difference between a
pallet and a person. This is a less conventional way of doing muting than the more common
muting sensors and light curtain combination. (Courtesy of SICK)

Figure 15-14 shows a light curtain attached to a safety relay. The light curtain has two
safety outputs. If nothing is blocking the light, the two outputs will be true. Two are used
for redundancy. These outputs also contain circuitry to detect short circuits between the
outputs, to the power supply, and to DC common. If a single fault occurs, the outputs
turn off and deenergize the safety relay.

Note that there are many types of safety relays that are available for different types
of uses. This safety relay is appropriate for taking two inputs. The first output from the
light curtain is connected to S12. The second output from the light curtain is connected
to S31. Note that S21 and S22 are tied together for this application. Note the series
circuit on top the relay. It is connected to pins S33 and S34. There is a manual reset in
this example. If something breaks the light beam in the light curtain, the light curtain
outputs will become false. The relay will sense the inputs are false and turn off the safety
contacts from the safety relay. If the obstruction in the light curtain is removed, the out-
puts of the light curtain will become true, but it will not change the state of the safety
relay output contacts. The outputs from the safety relay will not change until the manual

378 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Description ‘ LED Color Function
Supply Voltage Green Shows voltage present
K1 Green Shows safety output relay K1
energized
K2 Green Shows safety output relay K2
energized
Manual Reset K. Contactor
l » *I Ks: Monitoring
S11 | 833 834 | 835
& + T I
Safety Relay
-0 Ch1 CH2
S21 S12 S31 ‘ S22
. . I) 1h A |
Light Curtain

Figure 15-14 A light curtain connected to a safety relay.

reset switch is pushed. Note that we could add additional contacts (K, and K;) in the
manual reset circuit. These contacts come from contactors driven by the safety relay out-

puts and must be used to achieve control reliability.

Input Monitoring

When the input circuits are energized the safety relay monitors their synchronization.
The output circuits will only close if input 2 closes by no later than 70 ms after input 1.
If input 2 closes before input 1, the synchronization will not be affected, and the output
circuits will close. This monitoring only takes place in this relay if this relay is wired for

automatic reset.

CHAPTER 15—SAFETY DEVICES FOR RISK REDUCTION 379

Laser Scanners

A laser scanner is an optical sensor that can scan an area with infrared laser beams and
detect entry into the area.

The principle behind a laser scanner is time-of-flight measurement A laser scanner
emits very short light pulses which are sent out and reflected back when they hit an ob-
ject. The laser scanner measures the time it takes the light pulses to return and deter-
mines distances from the object by the time.

Scanners are programmable. Computer software is used to program how the
scanner will operate. Scanners can be programmed to safeguard areas of any shape,
as well as multiple zones. Many scanners can have a warning zone also. This would
be an area larger than the protective zone. It would be used to warn personnel that
they are getting close to the area where the laser scanner would shut the system
down. This area is also programmable. Scanners can be programmed to ignore fixed
objects in hazard areas such as posts or fixtures. Scanners can be mounted in differ-
ent orientations, horizontally, vertically, or at an angle depending on the needs of the
application.

The application on the left in Figure 15-15 uses a laser scanner on an automatically
guided vehicle. The laser scanner scans for obstructions and slows down if an object is
detected in the protective area. On the right a laser scanner is mounted vertically to scan
the entry point to a robot work cell. Muting would be employed in this example to differ-
entiate between a product and a person.

AW

7 A AVAVAVAVAVA WY

A AVAVAVAVAVAY,

Figure 15-15 Two laser scanner applications.

380 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Figure 15-16 shows a wiring diagram for a dual-channel safety switch on a door.

.]! Manual Reset

sm | s33 | s34 | s
+ 1T
Safety Relay

-0 Ch1 CH2

S21 | 812 S31 | S22

n 0...,?" Dual Channel
Safety Door With
(o FEERRRES: Cross Circuit
" Monitoring

Figure 15-16 Dualchannel safety door switch connected to a safety relay. Note the manual reset.

A safety relay for two-hand control is shown in Figure 15-17. S1 and S2 are the two
switches. Note that each switch has two contacts, one normally open and one normally

closed. The normally closed contact of buttons S1 and S2 must have opened before the
normally open contact closed.

0 |||] bl |

1
A1 Y11Y12Y14 Y1Y2 13 23 31 |
- 4+
UE 42-2 HD :
T
A2 Y21Y22Y24 14 24 32 SZl |
KA KB
M

Figure 15-17 A safety relay for two-hand control and its wiring.

CHAPTER 15—SAFETY DEVICES FOR RISK REDUCTION 381

CONTROL AND INTERFACE REQUIREMENTS

When considering the use of a safeguarding device, you must also consider the control of
signals related to the safeguarding devices. The system, in other words, the combination
of the protective device, machine control, and main stop elements, must satisfy regula-
tory requirements.

An example would be the use of a non-safety-rated (regular) PLC to control actua-
tors that cause hazardous motion. Even if safety relevant signals were used as inputs into
the PLC, this would not generally satisfy regulatory requirements. A regular PL.C cannot
meet the requirements. A safety-rated PLC or certified safety controller should be used.

Until relatively recently, safety-relevant control has been implemented using positively
guided relays (safety relays). In other words, safety circuits were hardwired. Standards
have been developed to determine the suitability of programmable devices in safety appli-
cations. IEC 61508, “Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-Related Systems,” is one of the more notable.

IEC 61508 establishes a method of determining the probability of failure of devices.
IEC 61508 has become the basis for determining the suitability of programmable devices
in safety control applications based on the associated SIL.

This enables users to utilize programmable safety devices and still comply with the
regulations and standards that apply to their application. Industry standards now provide
support for utilizing devices that have been approved by a nationally recognized testing
laboratory for use in safety relevant applications.

IEC 61508 has dramatically changed the safety-relevant control possibilities. Safety
controllers and safety field-bus networks are rapidly gaining in use and popularity.

Another important standard is ISO EN 13849. This standard is the successor to
EN 954 and is useful in assessing control safety systems that employ pneumatic and hydrau-
lic actuators. IEC 61508 and its subset IEC62061 only address electronic components.

CONTROL RELIABILITY

OSHA 1910.211 defines the term control reliability as a control system designed and
constructed so that a failure within the system does not prevent normal stopping action
from being applied when required, but does prevent initiation of a successive cycle until
the failure is corrected. The failure must be detectable by means of a simple test or indi-
cated by the control system.

ANSI defines control reliability in Standard B11.192003 (3.14) as “the capability of
the machine control system, the protective device, other control components and related
interfacing to achieve a safe state in the event of a failure within their safety related
functions”.

Control reliability can be attained by the use of, but not be limited to, one or both of
the following:

The use of two or more dissimilar components, modules, devices, or systems, with
the proper operation of each being verified (monitored) by the other(s) to ensure the
performance of the safety function(s)

382 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

The use of two or more identical components, modules, devices or systems, with the
proper operation of each being verified (monitored) by the other(s) to ensure the
performance of the safety function(s)

Control reliability must be taken into account in the development of safety-related
systems. Control reliable circuits should be hardware-based and include monitoring at
the system level.

ANSI/RIA R15.06-1999 (4.5.4) provides a practical guide to implementing control
reliability by requiring the following:

1. The monitoring generates a stop signal if a failure is detected. A warning is pro-
vided if a hazard remains after cessation of motion.

2. Following detection of a failure, a safe state is maintained until the fault is cleared.

3. Failures with a common cause (e.g., overvoltage) are taken into account if the
probability is high that such a failure may occur.

4. The single failure is detected at time of failure. If not practical, the failure is de-
tected at the next demand on the safety function.

SAFETY CONTROLLER

Safety controllers are programmable. They can take multiple inputs from various types
of safety devices. Figure 15-18 shows a programmable safety controller. The controller
can take multiple inputs and then has outputs that can be used to control the inputs
to a safety relay. The controller is programmable from a computer. Note that the safety
controller is not a PLC; it is a programmable safety device that can take multiple inputs
and generate safety outputs. The diagram on the right of Figure 15-18 shows potential
inputs, the software logic modules for processing and the potential outputs.

| EFI1 and EFI2

i e.g. C4000/S3000)
_/

ANe—" 83

= Digital inputs, e.g. modules — Outputs:

- for single- or dual-channel < signal outputs

input devices and sensors Release — signal lamps
(e.g. for the OSSDs of e modules — test signals,
ESPE, emergency stop, — —~ 0SSDs
safety switches, reset — = -

25 buttons, operating mode ur:jctllon)

—=| selector switches, —z| | mmodules Display elements:

machine cycle contacts) (Standard, —> LEDs,

c PSDI) 7-segment display
\ V| eeemead 5

RS-232 (for CDS)

Figure 15-18 A Sick-brand safety controller is shown on the left. The diagram on the right
shows a functional diagram of the safety controller.

CHAPTER 15—SAFETY DEVICES FOR RISK REDUCTION 383

A Safety Controller Example

Figure 15-19 shows a picture of a robotic work cell that utilizes several safety devices. In
this system several safety devices are used as inputs to a programmable safety control-
ler. The controller will take the inputs and generate output signals to be used as inputs
to a safety relay. The two contacts from the safety relay will be used as inputs to a robot

Figure 15-19 A robotic work cell.

safety circuit. The devices in this system that can be used to create an E-stop condition
will be a laser scanner, a light curtain, a robot gripper crash switch, and E-stop. A reset
switch will also used as an input to the safety controller to reset the system from an
E-stop. Figure 15-20 shows a picture of the safety controller and relay in the control
cabinet. The software that is used to program the safety controller also helps the tech-
nician plan the wiring. This example uses Sick safety devices and controllers as well as
their programming software. Figure 15-21 shows a screen capture of the software. The
basic procedure is that the user adds the devices to the application. The software shows
all of the potential connection points for each device and the user chooses one set of
connections. When all input and output devices are shown, the software then shows the
pin numbers for all connections. The user also chooses logic and connection blocks for
how the controller should respond to the inputs. In this example you see that an AND

384

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

logic block was chosen. The AND logic is used to make sure all four inputs are true. If
any of the inputs are deenergized or fail, the logic will turn off the two safety outputs
from the controller. The two safety outputs from the controller are connected to the
safety relay. If either or both outputs from the safety controller go false, the safety relay
turns its two outputs off. Those outputs in this application immediately stop and prevent
further motion of the robot.

Figure 15-20 A safety controller on the left and a safety relay on the right.

The left of the diagram shows the inputs to the safety controller. The topmost input
is an E-stop switch. Right under the E-stop input is a reset switch. Then there is a crash
switch for the robot gripper. If the robot gripper runs into something, the switch will
open. The next input is a two-contact gate switch. The next input device is two inputs
from a light curtain. The last input device is a laser scanner with two inputs to the con-
troller. The outputs to the robot are shown on the right of the figure. Outl provides two
outputs: 02.0 and O2.1. These must both be true for the robot to be able to move in auto
mode. If any of the input devices goes false, the outputs go false and the robot is stopped
or prevented from moving until the system is reset.

CHAPTER 15—SAFETY DEVICES FOR RISK REDUCTION 385

Figure 15-21 Screen capture of the logic for the safety controller in the robot cell.

SAFETY PLCS

The concept of the safety PLC is not really new. The safety PLC concept traces its his-
tory to the 1970s. Originally when PLCs were used for safety, standard PL.Cs were used
in pairs. One was the primary PLC and the other one was the redundant PLC. If the
primary PLC failed, the redundant PL.C could safely shut the system down. Dual PLCs
was an expensive method for implementing safety.

386 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

The concept of a safety PLC incorporates redundancy into a single PLC by having
multiple processors that execute the same logic, checking each other and only writing the
outputs on agreement. Although a safety PLC is more expensive than a regular PLC, it is
substantially cheaper than using two PLCs. Rockwell Automation has a safety PLC that
they call the GuardPLC.

QUESTIONS

1. Describe the three main safety considerations when a new machine is designed or if
existing machinery is upgraded.

With respect to guarding, what is interlocking?

What is the difference between a guard, a shield, and an awareness barrier?

What is the difference between a safety relay and a regular relay?

Describe the typical outputs from a light curtain.

What is muting?

What is blanking?

What two zones does a typical laser scanner have?

© P> Uk WL

Explain the term control reliability.

—
e

Name two differences between a safety controller and a safety relay?
. What is a safety PLC?

—
—

CHAPTER

G

Installation and Troubleshooting

Automated systems have become ever more prevalent. They have also become more reli-
able. In a way, this reliability makes maintenance more difficult for technicians. If you
do not have to repair a system for a period of time, you tend to forget things about the
system. This makes effective troubleshooting even more important.

Safety has also become a greater concern for operators and for maintenance person-
nel. Increasing use of safety systems such as safety relays and safety controllers has also
added to the complexity and importance of proper planning and installation. The increas-
ing complexity and cost of automation has also made maintenance and troubleshooting
more important. It is very costly for a system to be down. Technicians must be able to

quickly find and fix problems.

OBJECTIVES

On completion of this chapter, the student will be able to:

= Explain such terms as noise, snubbing, suppression, and single-point ground.
» Explain correct installation techniques and considerations.
= Explain proper grounding techniques.

» Explain a typical troubleshooting process.

INSTALLATION

Installation of an automated system is one of the most crucial phases of any project. It
can be a frustrating, exciting, and rewarding time. A project usually involves a tight time
schedule and a looming deadline.

387

388

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Documentation

The proper and efficient installation and wiring of a system is dependent on the quality of
the associated documentation. Documentation should include the following:

A system description

A diagram of the entire system

All programs including cross-referenced memory usage and clearly labeled 1/0s
A clear wiring diagram

A list of peripheral devices and their manuals

A system manual showing start-up and shutdown procedures

Manuals should also make provision for notes concerning maintenance. When the system
requires maintenance or repair, notes should be kept to facilitate future troubleshooting
and repair.

Fusing and Wiring

Proper fusing within the system is important. Devices must be fused to protect the
device, the wiring and personnel. The system must also be wired so that the devices are
protected from overcurrent situations. There are various types of enclosures available to
protect the PLC.

Enclosures

The devices in the control cabinet must be protected from the environment, from cool-
ant, chips, and other contaminants in the air. PLCs are mounted in protective enclosures.
There are various types of enclosures available to protect the PLC, and there are rating
systems for the protective enclosures. An enclosure is chosen on the basis of how severe
the application environment is. Enclosures typically protect the control devices from
airborne contamination. Metal enclosures can also help protect control devices from
electrical noise.

The International Electrotechnical Commission (IEC) and the National Electrical
Manufacturers Association (NEMA) both have ratings for enclosures. The IEC system
uses an Ingress Protection (IP) rating. Figure 16-1 has a table that shows the IP ratings.
The IP system has two numbers associated with the rating for an enclosure. The first
number represents the protection against ingress by a solid object. The second number
represents the protection against ingress by liquids. An IP 54 enclosure, for example,
would prevent an object larger than dust from entering the cabinet and would also pro-
tect against splashing water from all sides.

CHAPTER 16—INSTALLATION AND TROUBLESHOOTING 389

First Numeral: Protection against Second Numeral: Protection against
Ingress by Solid Objects Ingress by Liquids

0 Nonprotected Nonprotected

1 Protected against objects greater than 50 mm | Protected against dripping water

2 Protected against objects greater than 12 mm | Protected against dripping water when

tilted up to 15 degrees

3 Protected against objects greater than 2.5 Protected against spraying water up to 60
mm degrees from both sides

4 Protected against objects greater than 1.0 Protected against splashing water from all
mm sides

5 Dust protected Protected against water jets

6 Dust tight Protected against heavy seas

7 Protected against immersion

8 Protected against submersion

9K Protected against high-temperature,
high-pressure spray

Figure 16-1 IP enclosure ratings for nonhazardous locations.

NEMA's standard for enclosures is shown in Figure 16-2. The bottom row of the
table shows EIC’s IP equivalent enclosure.

Heat is generated by devices. One must make sure that the PLC and other devices to
be mounted in the cabinet can perform at the temperatures required. The temperature
in an enclosure is often higher than the temperature in the atmosphere around the en-
closure because of the heat generated by the devices in the enclosure. Fans can be used
in the enclosure to increase circulation and to reduce hot spots. Fans should have filters
to clean incoming air so that contaminants are not introduced to the cabinet and compo-
nents by the cooling air.

Adequate space must be provided around devices in an enclosure. This will allow air
to flow around the devices and enable them to remain cool enough. Hardware installation
manuals for each device will show minimum clearance dimensions for each device.

Clearance distances around devices should be equal to or greater than those shown
in installation documentation. Figure 16-3 shows an example of mounting documentation
for a ControlLogix controller. Check the specifications for all of the devices to be installed
in the cabinet. In most cases devices will be able to operate in the temperatures that will
be experienced without additional cabinet cooling. Observing proper clearances around
devices is normally sufficient for heat dissipation.

4 4X (] 6P
Indoor Indoor Indoor Indoor
] 3S or or or or
Protection against Outdoor | Outdoor | Outdoor Outdoor Outdoor Outdoor
Accidental bodily X X X X X X X X X X
contact
Falling dirt X X X X X X X X X X
Dust, lint, fibers - - X X X X X X X X
(non-volatile)
Windblown dust - - X X X X X X - -
Falling liquid, light - X X X X X X X X X
splash
Hosedown and - - - - X X X X - -
heavy splash
Rain, snow, sleet - - X X X X X X - -
Ice buildup - - - X - - - - - -
Oil or coolant - - - - - - - - X X
seepage
Oil or coolant spray - - - - - - - - X
and splash
Occasional - - - - - - X X - -
submersion
Prolonged - - - - - - - X - -
submersion
Corrosive agents - - - - - X - X - -
IEC equivalent IP10 IP11 P54 P54 IP56 IP56 IP67 IP67 P52 P54

Figure 16-2 NEMA enclosure ratings for nonhazardous locations.

06€

SHITTOHLNOD NOILYINOLNY FTIVININVHOOHd ¢XIDOTT0OHLNOD DNININVHDOOHd

CHAPTER 16—INSTALLATION AND TROUBLESHOOQOTING

391

o allow 15310 20cm (6.0t0 8.0 in)
between chassis and heat source

« allow 5.1 cm (2.0 in) between wireway

and top or bottom of chassis

15310 20cm

(60t080mIn)
>102¢m -) _ -
o [—F L e
[l
ﬂi . lﬁ
|
== v = ====)
1.71w0102¢cm >102¢em
>153cm (30t04.0in) 4.0in)
(6.0 in)

Figure 16-3 Mounting clearances. (Courtesy of Rockwell Automation, Inc.)

If you are adding devices to a cabinet, you must be very careful not to allow metal
chips or components such as screws to fall into devices or other components. Metal in the
wrong place can cause equipment to short circuit. It could also cause later intermittent
or permanent problems. Proper wiring of a system involves choosing the appropriate de-
vices and fuses (see Figure 16-4). Normally, three-phase power (typically 480 V) will be
used in manufacturing. This will typically be the electric supply for the control cabinet.

Wire Raceway-

Devices

Wiring Terminals -

~ Fuses

Control Transformer /

Figure 16-4 A block diagram of a typical PLC control cabinet.

Isolation Transformer

392

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Disconnects

Three-phase power is brought into the enclosure by a mechanical disconnect. This dis-
connect is turned on or off by the use of a lever on the outside of the enclosure. This
disconnect should be equipped with a lockout. This means that the technician should
be able to put a lock on the lever to prevent anyone from accidentally applying power
while the system is being worked on. The three-phase power must be fused. Normally, a
fusible disconnect is used. This means that the mechanical disconnect has fusing built in.
The fusing is to make sure that too much current cannot be drawn.

The main power disconnect should be placed so that it is easily accessible for
operators and technicians. Disconnects must ensure that power can be turned off
before the enclosure is opened. NFPA 79 provides information and guidelines on
disconnects.

Master Control Relay

The three-phase power is then connected to a contactor. The contactor acts as a master
control relay (MCR) for the system. The MCR is used to turn power off to devices in
case of an emergency. The contactor is attached to hardwired emergency circuits in the
system. If someone hits an emergency stop switch, the contactor drops out and cuts
the power to devices that might be dangerous. The MCR must be able to inhibit all
machine motion by removing power to the machine I/O devices when the MCR relay is
deenergized.

MCR|

MCR
] L

Figure 16-5 An MCR circuit.

If a DC power supply is used, the MCR should interrupt power on the load side
rather than on the AC supply side. This provides quicker shutdown of power. The DC
power supply should be powered directly from the fused secondary of the transformer.
DC power from the power supply is then connected to the devices through a set of MCR
contacts.

Emergency stop switches can be placed at multiple locations. The locations should
be chosen to provide maximum safety for anyone in the area. They are wired in series
(unless safety relay technology is utilized) so that if any one of the switches is activated,
the MCR is deenergized. This removes power from all input and output circuits. These
circuits must never be altered or bypassed to defeat their function. Severe injury or dam-
age could occur if they are altered or bypassed. These switches are designed to fail in
a safe mode (fail-safe). If there is a failure in the switch, they should open the master

CHAPTER 16—INSTALLATION AND TROUBLESHOOTING 393

control circuit to disconnect power. It is possible for a switch to short out and not offer
any protection. The newer technology safety switches and relays can provide the required
protection. Switches should be tested periodically. Their testing should assure that they
will still stop all machine motion if activated.

Figure 16-6 shows an example of a machine that cuts stock to length. There is a guard
door safety switch that is used to shut the system down if the guard is opened. There is
also an E-stop switch. The figure shows the wiring diagram. Note that the E-stop or the
guard-limit switch can shut the MCR off. Note that the MCR contacts are then used to
shut power to the PLC and the output module off.

Transformers

Three-phase power coming into the enclosure must then be converted to single-phase for
the control logic. Power lines from the disconnect are fused and then connected to trans-
formers. In the example shown in Figure 16-4 there are two transformers: a control trans-
former and an isolation transformer. The isolation transformer is used to clean the power
for the PLC. Isolation transformers are normally used when there is high-frequency con-
ducted noise. Isolation transformers also step down the line voltage.

The control transformer is used to supply the correct voltage to other devices in the
enclosure. The lines from the power supplies are fused to protect the devices they will
supply. These individual device circuits should be individually fused to match their cur-
rent draw. DC power is usually required also. An enclosure typically has a power supply
to convert the AC to DC. Motor starters are typically mounted in separate enclosures.
This protects the control logic from the noise these devices generate.

Use £.-S0p and Master Relsy

- -

I~ - : S;OP Power On Guad Master
p— 2 . o Heimy
Gurd Limet Switch 7 \ Emergency C == L —~
v N/ Stop o | .] =g \
2] i._
[{ EEEEEEEE Wanter Reiay Contacts
i
Heay -
g Contacts - B
L

-
» |) N Al p
— To dacornedct PLC Power
Outpus
"':""" Moduie Saw
-y [
Contacts -
| — 3\//\-..,-.

To Smconnect output
S prwed)

Figure 16-6 The use of a hardwired E-stop and MCR. (Courtesy Automationdirect.com)

394 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

CODES
NFPA 70

NFPA 79:

WIRING

National Electrical Code

This code covers the installation of electric conductors, equipment, and raceways; signal-
ing and communications conductors, equipment, and raceways; and optical fiber cables
and raceways.

Electrical Standard for Industrial Machinery

NFPA-79 is an electrical standard that was developed by the National Fire Protec-
tion Association. It was “intended to minimize the potential hazard of electrical shock
and electrical fire hazards of industrial metalworking machine tools, woodworking
machinery, plastics machinery and mass produced equipment, not portable by
hand.” This is the same association that is responsible for the National Electrical
Code (NEC).

Scope: “The standard shall apply to the electrical/electronic equipment, apparatus, or
systems of industrial machines operating from a nominal voltage of 600 volts or less, and
commencing at the point of connection of the supply to the electrical equipment to the
machine.”

Wire Color

Within the control cabinet certain wiring conventions are typically used. Red wiring is
normally used for ungrounded AC control conductors at less than the line voltage. Black
wiring is used for ungrounded line, load, and control conductors at line voltage. Blue
wire is used for ungrounded DC control conductors. Yellow wire is used to show that the
voltage source is separately derived power (outside of the cabinet). Green wire (with or
without one or more yellow stripes) is used to identify the equipment grounding conduc-
tor where it is insulated or covered.

Signal wiring is usually low voltage/low current and can be affected by being too close
to high-voltage wiring. Signal wiring should be run separately from 120-volt wiring. When
possible, signal wires should be run in a separate raceway or conduit. Some raceway is
internally divided with a barrier to isolate signal wiring from higher voltage wiring.

General Wiring Suggestions

Do not run system and field wiring close to high-energy wiring. Use cable trays for wiring.
Separate DC and AC wiring when it is possible. A good ground must exist for all compo-
nents in a system (0.1 ohm or less). If long return lines to the power supply are needed,
use separate wires for input and output modules. Separate return lines will minimize the
voltage drop on the return lines of the input connections.

CHAPTER 16—INSTALLATION AND TROUBLESHOOQOTING

395

GROUNDING

Proper grounding is crucial for the safety and proper operation of a system. Grounding
also helps limit the effects of electromagnetic interference (EMI).

The PLC and components are connected to the subpanel ground bus. See Figures 16-7
and 16-8. Ground connections should run from the PLC chassis and the power supply for
each PLC expansion unit to the ground bus. The connection should exhibit very low re-
sistance. Connect the subpanel ground bus to a single-point ground, such as a copper bus
bar to a good earth ground reference. There must be low impedance between each device
and the single-point termination. A rule of thumb would be less than 0.1-ohm DC resis-
tance between the device and the single-point ground. This can be accomplished by remov-
ing the anodized finish and using copper lugs and star washers.

Wiring terminal block

[\ f \
i \
;“ ;*ll =]

TREl

-

| o _{g; \
\ f
. 4 Equipment groundi
Equipment grounding <1 / conductor i:culﬂ;:*“h
conductor (ground lug with At 2.1 sq. mm [14 AWG] wire)
2.15q mm[14AWG] wire) /‘/ otective earth ground
protective earth ground —— :om hasss t wmm
from chassis to ground bus m—
Nut with captive
star washet b

Figure 16-7 Proper grounding of CPU and chassis. (Courtesy of Rockwell Automation, Inc.)

396 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

=3 Keep wire lengths as

r
! o
Bhesvepen

i

| [OE==i=4| shortas possible
I===5
'S el
s a
r _— o e e e
P e =
m_——==c

. ¥ ¥ .

LR |

[i I
. Tt
-.‘*--lwa_l_l_*—-

Earth Ground

Figure 16-8 Proper grounding of ControlLogix controllers. (Courtesy of Rockwell
Automation, Inc.)

PLC manufacturers provide details on installation in hardware installation manuals.
The NEC is also an authoritative source for grounding requirements.

Grounding Guidelines

Refer back to Figures 16-7 and 16-8. Grounding braid and green wires should be ter-
minated at both ends with copper eye lugs to provide good continuity. Lugs should be
crimped and soldered. Copper No. 10 or 12 bolts should be used for those fasteners
which are used to provide an electric connection to the single-point ground. This ap-
plies to device mounting bolts and braid termination bolts for subpanel and user-supplied
single-point grounds. Tapped holes should be used rather than nuts and bolts. Note that a
minimum number of threads are also required for a solid connection.

Paint, coatings, or corrosion must be removed from the areas of contact. Use external-
toothed lock washers (star washers). This practice should be used for all terminations: lug
to subpanel, device to lug, device to subpanel, subpanel to conduit, and so on.

CHAPTER 16—INSTALLATION AND TROUBLESHOOTING 397

Instructions for a functional ground (Courtesy Rockwell Automation Inc.)

* Use 2.54-cm (1-in.) thick copper braid or 8.3-mm? (8 AWG) copper wire to con-
nect the equipment grounding conductor for each chassis, the enclosure, and a
central ground bus mounted on the back panel.

= Use a steel enclosure to guard against EMI.

= Make sure the enclosure door viewing window is a laminated screen or a conduc-
tive optical substrate (to block EMI).

Rockwell instructions for an equipment protective earth ground

» Use 2.1-mm? (14 AWG) copper wire for the equipment grounding conductors.
» Install a bonding wire for electric contact between the door and the enclosure; do
not rely on the hinge.

You must check the appropriate electrical codes and ordinances to assure compliance and
safety.

Ground versus Neutral

Grounding is one of the least understood things about electric systems. Grounding helps
ensure safety but also ensures that electric devices do not interfere with each other in the
cell. The terms neutral and ground can cause confusion. Ground is an electric path that is
designed to carry current when there is an insulation breakdown in a system. An example
would be a technician dropping a tool into a cabinet and causing a breakdown when the
tool contacts a voltage source and the cabinet or other metal. Some current will always
flow through the ground path. This is usually caused by inductive or capacitive coupling
between the current-carrying conductors and the ground path.

Neutral represents a reference point within an electric distribution system. These
wires should be sized to handle the short-term faults that may occur. Neutral can be
grounded: ground is not neutral.

ELECTRICAL NOISE

Electrical noise is unwanted electrical interference that can affect the operation of control
equipment. Noise can cause intermittent or consistent minor problems or severe damage
to equipment and people.

Many devices in manufacturing create electrical noise. Manufacturing devices that
switch high voltage and current are the primary sources of noise. Motors, starters, weld-
ing equipment, and contactors that are used to turn devices on and off are some of the
worst offenders. Electrical noise is not always continuous; it is often an intermittent prob-
lem. It can be very difficult to find intermittent sources of noise.

Power line disturbances, transmitted noise, or ground loops can cause electrical
noise. Power line disturbances are generally caused by devices that have coils. Coil-type
devices include relays, clutches/brakes, contactors, starters, solenoids, and so on. When
a coil is switched off, it creates a line disturbance. Line filters can be used to deal with
power line disturbances. Surge suppressors such as MOVs or an RC network installed
across coils can limit noise from the coil.

398

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Some devices create radio frequency noise. This is called transmitted noise. Trans-
mitted noise generally occurs in high-current applications. Welders cause transmitted
noise. When contacts that carry high current open, transmitted noise is generated. Con-
trol wiring that carries signals can be disrupted by this type of noise. Transmitted noise
can leak into control cabinets. Holes in electrical enclosures for switches and wiring allow
transmitted noise to enter the cabinet. Properly grounding the cabinet can help reduce
the chance that noise will cause problems.

Another example of transmitted noise would be a sensor that is connected to a PLC
input card. Transmitted noise can cause false signals on the sensor wiring. Twisted pair
shielded wiring and connecting the shield to ground can help alleviate this problem.

Ground loops can also generate noise. These are the most difficult problems to
find. Ground loops often cause intermittent problems. Ground loop noise occurs when
multiple grounds exist. The farther the grounds are apart, the more likely there will be
a problem. A potential can exist between the power supply earth and the remote earth.
This can create unpredictable results, especially in communications.

Proper installation can avoid problems with noise. There are two main ways to deal
with noise: isolation and suppression.

Noise Isolation

In noise isolation the device or devices that are generating the noise are physically sepa-
rated from the control system. The enclosure also helps separate the control system from
noise. Field wiring is often located in very noisy environments. This presents a problem,
especially when low voltages are used such as in sensors. Control wiring should be done
with shielded twisted pair wiring. The shielding should only be grounded at one end. The
shield should be grounded at the single-point ground.

The effects of noise can be minimized by

Using a suitable enclosure to house the PLC and components
Proper grounding of all equipment

Proper routing of all wiring

Installing suppression devices on noise-generating devices

Noise Suppression

Noise suppression is aimed at the devices that generate noise. When the current to
an inductive load is turned off, a very high voltage spike occurs. The manufacturing
environment is filled with inductive devices. Inductive devices include motors, motor
starters, relays, solenoids, and so on. Suppression is even more important when an
inductive device is in series or parallel with hard contacts such as those found in push-
buttons and switches.

High-voltage spikes can cause problems for manufacturing devices and PLCs. The
problems are often sporadic. Some PLC modules have circuitry to protect against in-
ductive spikes. A suppression network can be installed to limit voltage spikes. Surge
suppression is connected directly across load devices. This helps reduce arcing of output
contacts. Excessive noise can reduce the life of relay contacts.

CHAPTER 16—INSTALLATION AND TROUBLESHOOTING 399

The top of Figure 16-9 shows examples of surge suppression for AC outputs. Surge
suppression should be used on all coil-type outputs. Noise suppression can also be called
snubbing. Snubbing can be used to suppress the arcing of mechanical contacts that oc-
curs when inductive outputs are turned off. An RC, a varistor circuit, or a surge suppres-
sor can be used across an inductive load to suppress noise.

The bottom of Figure 16-9 shows noise suppression for a DC output. A diode or a
surge suppressor can be used for DC output devices.

Qutput Device Qutput Device Qutput Device
d
RC Network Varistor Surge Suppressor

Surge Suppression for Inductive AC Devices

Output Device

Diode or Surge Suppressor
Surge Suppression for Inductive DC Load Devices

Figure 16-9 Surge suppression methods for AC and DC loads.

Figure 16-10 shows an example of a snubber installed across an output.

The components used for surge suppression must be sized to meet the characteristic
of the inductive output device. The PLC installation manual will usually contain detailed
information.

+DCor L1

VAC/DC .—,

Output @ o_l_e

Switch Coil
Contacts

Snubber

Common @~ |
DC Common or L2

Figure 16-10 Snubbing.

400

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

PLC MAINTENANCE

PLCs are designed to be very reliable devices. Downtime is very expensive in manufac-
turing. Technicians must keep systems running. Downtime must be kept to a bare mini-
mum. There are some tactics that can reduce downtime.

It is important to keep PLCs, modules, and devices clean and free from dust and
debris. PLCs and control devices are typically mounted in electrical enclosures. Some
electrical enclosures are cooled by a fan that is mounted in the wall of the enclosure. The
fan is used to circulate fresh air through the cabinet and cool the devices in the enclosure.
Dust, dirt, and other contaminants can accumulate on the devices. Dust and dirt can
short out components and also cause heat problems.

Enclosure fans must have adequate filters. The filters must be cleaned regularly.
Every system should have a preventive maintenance procedure that includes a check of
the enclosure to make sure the inside is free of contamination. The procedure should in-
clude an inspection for loose wires or loose termination screws. Vibration in a system can
loosen screws and cause intermittent or permanent problems.

Many control devices have battery backup. The procedure should specify battery
replacement for devices that have batteries for memory backup. Lithium batteries are
typically used. They typically have lifetimes of two or more years. Batteries always fail at
the worst possible time. Their failure can cause a loss of memory that can cause unneces-
sary system downtime. This is very expensive and frustrating. One can imagine a tech-
nician frantically searching the plant for the backup copy of the program that was lost.
Replacing the batteries once a year is a very inexpensive investment to avoid downtime.

Keeping the System Operational

Downtime is very expensive. Repairing boards or other components is usually not an
option. The technician must be able to find and correct the problem in a minimum of
time. This usually means replacing components. A rule of thumb is to inventory one spare
for each ten devices used. This applies to CPUs, each type of I/O, and special-purpose
modules. Parts that fail more often or take more time to get should be kept in stock. Spare
parts should also be maintained for drives, motors, sensors, and other devices. In some
cases it may be possible to return more expensive devices to the manufacturer for repair.
A spare one assures that production can resume while the defective one is returned to the
manufacturer for repair. A reasonable inventory of spare parts can dramatically reduce
downtime, expense, and frustration.

TROUBLESHOOTING SYSTEM PROBLEMS

The first consideration in troubleshooting and maintaining systems is safety. When you
encounter a problem, remember that less than one-third of all system failures will be due
to the PLC. Most of the failures are due to input and output devices (up to 80 percent).
You must always be aware of the possible outcomes of changes you make. Many years
ago there was a technician who isolated the problem in a machine to a defective part

CHAPTER 16—INSTALLATION AND TROUBLESHOOTING 401

sensor. The technician crawled into the machine and bypassed the sensor. The system
restarted with the technician in the machine. This does help explain the importance of
following lockout/tagout procedures.

The use of the Web is indispensable to the technician. Manufacturers put their prod-
uct manuals online. More importantly there are many websites devoted to helping solve
PLC and automation problems. There are online forums where you can enter your ques-
tions for the problem you are experiencing. Users will respond with solutions in a very
short time. Rockwell Automation also offers help on its website. The Web has become
one of the technician’s best friends.

People Skills in Troubleshooting

Involve the Operator

Was the system running when the problem happened?
Ask the operator what she or he thinks may have caused the problem.

Many technicians will assume that a symptom is the problem. Solving the symptom may
get the system running again. But the real problem is bound to cause problems later.

An example of solving the symptom rather than the problem is taking an aspirin for a
headache. If you have a headache, you may take an aspirin. The aspirin will help with the
pain. But the pain is merely a symptom. You did not solve the cause for the headache. It
may have been due to a hangover (in which case it will pass) or a brain tumor, stress, or
many other causes.

The equivalent example in maintenance would be a blown fuse. The maintenance
technician replaces the fuse and the system runs again. Replacing the fuse did not solve
the cause of the problem.

The fuse blew because of excess current, but what caused the excess current? It
could have been the result of a short circuit, a voltage spike, a short in the output device,
or many other causes. If the technician doesn't find the cause before replacing the fuse,
he or she did not solve the problem but only temporarily hid a symptom.

Logically Isolate the Probable Cause

Are you familiar with the game where you have to guess a number between 1 and 1007
If you are wrong you are told if you are too high or too low and you guess again. This
continues until you get it right. The best strategy is to split the problem in half. In other
words guess 50 first. Then if you are too low, use 75. By continually splitting the problem
in half, you solve the problem in the fewest possible steps.

Troubleshooting should involve similar thought. Too many times a technician may
jump to too quick a conclusion when presented with a problem to troubleshoot. You
should think the problem through and make a decision about what to test first. Each test
should help divide the problem area in half.

Problems should be solved by replacing only the defective devices or components.
Have you ever had your car fixed and found that the technician replaced several parts

402

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

that you did not think you needed? The technician probably began replacing parts that
were not defective before finding the root cause of the problem.

One of the most important things in troubleshooting is to establish a logical approach.
A good troubleshooter uses an approach that enables her or him to logically and effi-
ciently determine what is wrong.

Typically 80 percent of all PLC malfunctions can be traced to problems with I/O
modules or field devices.

Troubleshooting Input and Output Problems

Typically the first task in I/O troubleshooting is to find out why the internal I/O states of
the PLC do not agree with the external I/O states.

One of the best troubleshooting tools is the personal computer and the programming
software. With the PLC online, you can monitor the I/O and check the program versus
the real-world states.

Troubleshooting Discrete Input Modules

If you are troubleshooting an input, check the LED for the input first. If the input were
true, the LED for that input should be on. It should also appear energized in the pro-
gramming software if you are online with the PLC.

If the status LED on the module does not turn on, check to make sure there is input
power. If input power is not present, determine and rectify the cause of the failure before
proceeding. Remember that input power is normally not supplied by the module. There
will probably be a power supply for the inputs.

PLC input modules normally do not supply their own power.

If there is proper input power, connect a meter across the input device, change the
state of the input, and measure the voltage at the PLC input to see if it changes when the
input device changes state. If you do not see the change of state, the input device or its
wiring is most likely the fault.

If you do observe the correct voltage change, the input status LED on the module
should change. This should also be observable in the programming software when on-
line. If the status LEDs do not properly indicate the state of the input, the input module
should be replaced.

Troubleshooting Analog Input Modules

Analog input modules are used to measure the actual value of a voltage or current.
Change the voltage or current level generated by the analog input device. For ex-
ample, if it is a thermocouple, change the temperature at the thermocouple. Check the
value of the input in the programming software. Make sure you are online. If you do not
see a change in the address for that input, use a meter to see if the correct input level
is present at the input module. If there is no input at the module input, check to make
sure there is power to the device. If the device is properly powered, check and make sure
there is output from the device. If not, replace the device. If there is output, but it is not

CHAPTER 16—INSTALLATION AND TROUBLESHOOTING 403

at the correct level, try to calibrate the device. If the output from the device seems cor-
rect, check the wiring to the module. If the signal is correct at the input terminal but the
numbers in the memory address are not correct, you may be able to calibrate the module
to show the correct value. If not, replace the module.

Inputs can be checked and calibrated by using a calibration meter as the input source
to the analog input. A calibration meter is a very accurate meter that can source various
signals. They are calibrated at regular intervals to make sure they are accurate.

Troubleshooting Discrete Output Modules

The first step is to determine if the power for the output in question is present and to
restore that power if it is not present. The power for PLC outputs is not typically sup-
plied by the module. Locate the power supply for the outputs. Output modules are
typically fused.

Faults in devices or field wiring can blow the module fuse. Most modules have a
fuse-blown LED that shows which output or module has a blown fuse. Check the fuse-
blown LED before proceeding. These fuses may be accessible from the front in some
modules. Some modules have fuses that can be reset electronically with the program-
ming software. In some modules the module may have to be removed and disassembled
to replace fuses.

After the fuses have been checked and proper power has been verified, you can trou-
bleshoot the digital outputs.

Use the computer and programming software to force the output on or off. Observe
the LEDs on the module for a change. If the output status LEDs on the module do not
agree with the forced condition, the output module should be changed.

If the output LEDs are observed to be reacting to the forced state but the problem
still exists, measure the voltage across the output device to see that it’s changing as the
state of the output changes. This may seem a little strange, but if the output is on, you
should read 0 volts between the common and the output pin on the module, assuming
there is a load connected.

A common technician error is to disconnect the load and check the voltage at the
output with respect to neutral when it is off. The meter will typically read full voltage
(due to leakage). The technician assumes there is a bad module.

If the output is off, you should read full voltage between the module common and
the output pin. Think this through; it is an important concept for understanding
I/O and troubleshooting.

If the voltage is changing but the device is still not working, the problem is the output
device or wiring.

If you find that the voltage is not changing, the problem is most likely in the field wir-
ing. If this is the case, you can disconnect the actual output and connect a test
load to the module.

If the test load operates correctly, the problem is in the field device or field wiring.
A solenoid valve or a relay can be used for a test load.

404 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Troubleshooting Analog Output Modules

Analog outputs are used to generate a variable voltage or current output. Usually there is
no indication on the module to reflect the level of the output. First you must determine
the resolution and range of the modules. For example, if it is a 14-bit module, you might
expect the number 0 to represent 4 mA and 32,767 to represent 20 mA. These numbers
can be looked up in the manual for the module.

Next you can enter test values into the PLC address associated with the output. It is
good to test the minimum, half-scale, and maximum values while you measure the volt-
age or current generated at the output.

In the 14-bit current module example, a 0 in the appropriate PLC address should
generate 4 mA at the output terminals, 16,383 should generate 12 mA, and 32,767 should
generate 20 mA. If the field wiring or field device are in doubt, they can be temporar-
ily disconnected and replaced by a test load. If the proper currents or voltages are not
measured at the test load, the analog output module should be calibrated if possible or
replaced. A properly sized resistor, typically between 250 and 1000 ohms, can be used as
a test load in analog circuits.

Troubleshooting CPU problems

If the problem seems to be in the PLC CPU or system, one of the first things to look
at is the PLC’s power supply and ground. Visually inspect the power and ground wir-
ing, looking for loose, corroded, or problems in connections. The ground can be electri-
cally checked by measuring the voltage between the PLC ground terminal and a known
ground. The AC and DC voltages should be 0 on a meter.

Test the power supply. If the PLC power supply has an AC power source, check the
input voltage; make sure it is within the manufacturer’s specified range.

Check the DC supplies for AC ripple. Use a digital meter set on a low AC range. The
value should be well below the manufacturer’s specifications for ripple. Excess ripple can
have dramatic effects on the operation of the CPU and its memory.

The final power check is to check the batteries in the system. Batteries are often used
to maintain processor memory during times when the PLC is not powered. Battery volt-
age should be within the specified values.

EMI or radio frequency interference (RFI) can also cause intermittent erratic opera-
tion. It is difficult when problems are intermittent, but try to correlate the erratic behav-
ior with events such as ARC welding in the area, radio transmitters, the starting of a large
motor, lightening, or other such events. Once a problem can be identified a solution can
be implemented. Solutions to EMI and RFI problems typically involve improvements in
power conditioning, shielding, and grounding.

If the battery or noise was eliminated as a problem, one should verify that the PLC
program is correct. The program should be verified against a good copy or the program
should be downloaded to the PLC. It is a good idea to verify the memory against a known
good copy so that you know if there is a problem. Make sure you keep program backups
and store them away from an EMI or RFT to prevent damage.

CHAPTER 16—INSTALLATION AND TROUBLESHOOTING 405

Review

Troubleshooting is a relatively straightforward commonsense process. The first step is to
think. Many technicians are too quick to jump to improper, premature conclusions and
waste time finding problems. The first step is to examine the problem logically. Think
the problem through using common sense first. Troubleshooting is much like the game
Twenty Questions. Every question should help isolate the problem. In fact, every ques-
tion should eliminate about half of the potential causes.

Think logically.
Ask yourself questions to isolate the problem.
Test your theory.

Next use the resources you have available to check your theory. Often the error-checking
present on the PLC modules is sufficient. The LEDs on PLC CPUs and modules can
provide immediate feedback on what is happening. Many PLCs have LEDs to indicate
blown fuses and many other problems. Check these indicators first.

Troubleshooting Example

The operator of a machine calls a technician and tells him or her that an output is not
turning on when it should. There are many things that could cause this to happen.

The PLC output module or the output module that controls the output could be de-
fective. A fuse could be blown. The output device could be faulty. One of the inputs that
control the contact in the logic that controls the output could be defective. The logic in
the PLC could be faulty. Logic can be written that performs perfectly the vast majority of
the time but fails under certain conditions.

The technician should not immediately jump to a conclusion about what is causing
the problem.

The I/O status LEDs provide the best and easiest source of information. If the status
LED for that output is on, the problem is probably not the inputs to the PLC. In this
case, the device is defective, the wiring is defective, or the PLC output is defective. This
simple check eliminated half of the system from consideration.

A voltmeter can be used is to further isolate the problem. If the PLC output is off, a
meter reading should read the full output voltage. If the output is used to supply 115 volts
to a motor starter, the meter should read 115 volts between the output terminal and the
module common. It may seem strange that you would read full voltage with the output off.

If the PLC output is on, the meter should read 0 volts. Remember that the output
acts as a switch. If we measure the voltage across a closed switch, we should read 0 volts.
If the switch is open, we should read the full voltage. If there is no voltage in either
case, the power supply and wiring should be checked. If the power supply and wiring are
okay, the device is faulty. There may also be fuses or overload protection present that can
be the cause.

Now pretend that the output LED was not turning on. Turn your attention to the
input side of the system. Study the logic to see which inputs may be involved in the rung

406

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

that controls the output state. Assume there is only one sensor that controls the state.
If the input status LED on the input module is on, the sensor would seem to be opera-
tional. If you can safely activate and deactivate the sensor, do so and watch the LED for
the change. Next monitor the logic to see if the PLC really sees the input as true. The
logic should be monitored in online mode to check the input. Monitor the logic to see if
the contact is closing. If it is seeing the true input as false, the problem is probably a de-
fective PLC module input. Figures 16-11 and 16-12 show troubleshooting for input and
output modules.

Input LED | State of Device Condition Problem Things to Check
Input may be Check for forced I/O on the CPU,
forced on. remove forces, and verify the
The program wiring. Try an unused input or
Off operates as if replace the module.
Off the input is on.
An input circuit | Verify the wiring. Try a different
is bad. input or replace the module.
off The input device | The input Verify the operation of the
will not turn on. device is bad. device. Replace if defective.
The input device The device is Verlfy the operat-lon of the
. damaged or device. Replace if defective.
will not turn off.
shorted.
On An input is Check the forced I/O on the CPU.
Program operates | forced off. Remove forces.
as if the input
device is off. An input circuit | Verify the wiring. Try a different
is bad. input or replace the module.
An input circuit | Verify the wiring. Try a different
On is bad. input or replace the module.
An input Verify the operation of the
Program operates | device is bad device. Replace if defective.
as if the input is or shorted.
off onor thg Input Leakage Use a load resistor to bleed off
circuit will not
current of the excess current.
turn off. . .
input device
exceeds the
module’s input
specification.
Figure 16-11 Chart for troubleshooting inputs.

CHAPTER 16—INSTALLATION AND TROUBLESHOOTING 407

Output State of
LED Device Condition Problem Things to Check

There is incorrect

Check the wiring. Disconnect and test the device.

Output wiring.
device is Output device Verify that the device is OK, replace if necessary.
on, but . R
On program is defective or
indicates it shorted.
is off. The output circuitis | Check the wiring. Move the device to an unused
defective. output or replace the module.
The output circuitis | Use a force to turn the output on. If the output turns
damaged. on, it is a program problem. If the output does not
Off turn on, there is an output circuit problem. Try a
different output or replace the module.
Program
shows that | This is a program Look to make sure outputs have not been
the output problem. duplicated in logic. If subroutines are being used,
Off is on, or outputs are in their last state when not executing
the output subroutines. Force the output on. If the output does
circuit will not turn on, the output circuit is bad. Try a different
not turn on. output or replace the module. If the output does
force on, check for a problem in the program.
The output is forced | Check the CPU to see if /0 has been forced.
off in the program. Remove forces.
This is a program Look to make sure outputs have not been
problem. duplicated in logic. Outputs will remain in their
last state when not executing subroutines. Force
The the output off. If the output does not turn off, the
program output circuit is bad. Try a different output or
shows the replace the module. If the output cannot be forced
on output is off, it is most likely a program logic problem.
off, or th? An output in the Force the output off. If the output turns off, there
output will
not turn module is bad. isa proplem_ with the program: If not, there is an
output circuit problem. Try a different output or
off.
replace the module.
on The output is forced | Check the CPU for forced I/0. Remove forces.
on.
There is bad wiring Check the wiring and the connections to the
or an open circuit. common.
OUtP“t . The output in the Try a different output on the module or replace the
device will | module is bad. module if necessary.
not turn
Off on, but the Voltage across Check the source voltage.
program the load is low or
indicates it | absent.
is on.

Output device is not
compatible with the
module.

Check the specifications of the module - sink,
source, etc.

Figure 16-12 Output troubleshooting chart.

408

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

POTENTIAL LOGIC PROBLEMS

Some PLCs allow the same output coil to be used on more than one rung. This means
that there are multiple rungs with different conditions that control the same output coil.
There are many technicians who were sure that they had a defective output module be-
cause when they monitored the ladder the output coil was on but the actual output LED
was off. In many cases they had inadvertently programmed the same output coil twice
with different rung conditions. The rung they monitored was true, but one farther down
in the ladder was false, so the PLC deenergized the output.

Problems can be intermittent in logic. Timing can cause serious issues in poorly
written logic. Devices often exchange signals to signify that an action has occurred. For
example, a robot finishes a step and sends a digital signal to the PLC to tell it the step is
done and the robot is ready for the next step in the sequence.

If the robot programmer just turns it on for one step in the program, the output may
be on for less than a millisecond. The PLC may catch the signal every time, or it may miss
it sporadically because of the length of the scan time of the PLC.

This is a difficult problem to troubleshoot, because it occurs intermittently. Hand-
shaking is often used by programmers instead of relying on the PLC seeing a periodic
input. Handshaking means that the devices work together to assure no signals are missed.
If handshaking is used, the programmer would develop the robot program so that the
robot’s output would stay on until it has been acknowledged by the PLC. This means that
the robot turns the output on and waits for an input from the PLC to assure that the PLC
saw the output from the robot.

SUMMARY

The installation of automated systems must be carefully planned. Safety must be the prime
concern. Risk analysis must be done to evaluate the safety of a system. People and devices
must be protected though good design principles. Hardwired E-stop switching should be
provided to drop all power to the system. Lockouts should be provided to assure safety
while maintenance is being performed. Fusing must be done to protect individual devices
and personnel. Electrical enclosures must be carefully selected to meet the needs of the ap-
plication environment. Proper grounding procedures must be followed to ensure the safety
of personnel and devices. Control and power wiring should be separated to reduce noise.

To be effective, troubleshooting should be logical. Think the problem through before
acting. Ask questions that will help isolate the potential problems. Above all, apply safe
work habits while working on systems.

QUESTIONS

1. What items should be included in system documentation?
2. Describe what each of the two numbers in an IP enclosure rating is used for.
3. What is a NEMA enclosure?

CHAPTER 16—INSTALLATION AND TROUBLESHOOTING 409

© P N> Uk

10.
11.
12.
13.
14.

15.

16.

17.

Describe what an IP 54 enclosure would be.

Describe a NEMA 4 enclosure.

What would be an equivalent enclosure in a IP rating for a NEMA 4 enclosure?
Describe how an enclosure is chosen.

What is a fusible disconnect?

What is a contactor?

What is the purpose of an isolation transformer?

What is the major cause of failure in systems?

Describe a logical process for troubleshooting.

Describe proper grounding techniques.

Describe at least three precautions that should be taken to help reduce the problem
of noise in a control system.

Troubleshoot the following:

An output device will not turn on. The output status LED on the module seems to be
working fine. A voltmeter is placed across the PLC output with the output on; 0 volts
is read. What is most likely wrong?

Troubleshoot the following:

The output device is not turning on for some reason. The technician turns the output
on and places a voltmeter over the PLC output; 115 volts is read. The output status
LED is on but the device is not turning on. What is the most likely problem? What
should the technician do?

Troubleshoot the following:

An input on the module seems to be faulty. The technician notices that the input’s
status LED is never on. A voltmeter is placed across the PLC input; 0 volts is read.
The technician removes and tests the sensor. (The LED on the sensor comes on
when the sensor is activated.) The sensor seems fine. What is wrong?

This page intentionally left blank

CHAPTER

117

Lockout/Tagout

OBJECTIVES

On completion of this chapter the reader will be able to:

= Understand the sources of potentially harmful energy.
» Understand the purpose and importance of lockout/tagout.
= Identify sources of energy.

» Develop lockout/tagout procedures.

INTRODUCTION

An automated machine or system can have several dangerous sources of energy. There are
many types of energy that can be dangerous for the operating personnel and especially
for technicians performing maintenance or service on the equipment. Lockout/tagout
was designed to reduce the risk for these personnel when maintaining and servicing
equipment.

LOCKOUT/TAGOUT

On October 30, 1989, the Department of Labor released “The control of hazardous
energy sources (lockout/tagout)” standard. It is the lockout/tagout standard numbered
29 CFR 1910.147. The standard was intended to reduce the number of deaths and inju-
ries related to servicing and maintaining machines and equipment.

The lockout/tagout standard covers the servicing and maintenance of machines and
equipment in which the unexpected startup or energization of the machines or equip-
ment or the release of stored energy could cause injury to employees. The standard

412

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

covers energy sources such as electric, mechanical, hydraulic, chemical, nuclear, and
thermal. The standard establishes minimum standards for the control of these. Normal
production operations, cords and plugs under exclusive control, and hot tap operations
are not covered by the standard.

Normal production operations are excluded from the lockout/tagout restrictions.
Normal production operation is the use of a machine or equipment to perform its in-
tended production function. Any work performed to prepare a machine or equipment to
perform its normal production operation is called setup.

If an employee is working on cord-and-plug-connected electric equipment for which
exposure to unexpected energization or start-up of the equipment is controlled by the
unplugging of the equipment from the energy source, and the plug is under the exclu-
sive control of the employee performing the servicing or maintenance, this activity is also
excluded from the requirements of the standard.

The standard does not apply to hot taps when they are performed on pressur-
ized pipelines, provided that the employer can demonstrate that continuity of service
is essential; shutdown of the system is impractical; documented procedures are fol-
lowed; and special equipment is used that will provide proven, effective protection for
employees.

Hot tap operations involve transmission and distribution systems for substances such
as steam, gas, water, or petroleum products. A hot tap is a procedure used in maintenance
that involves welding on a piece of equipment such as a pipeline or tank, under pressure,
in order to install connections or devices.

The lockout/tagout standard defines an energy source as any source of electric,
mechanical, hydraulic, pneumatic, chemical, thermal, or other energy. Machinery or
equipment is considered to be energized if it is connected to an energy source or con-
tains residual or stored energy. Stored energy can be found in pneumatic and hydraulic
systems, capacitors, springs, and even gravity. Heavy objects have stored energy. If they
fall, they can cause injury.

Servicing or maintenance includes activities such as installing, constructing, set-
ting up, adjusting, inspecting, and modifying, as well as servicing or maintaining
equipment. These activities include lubricatng, cleaning, or unjamming machines or
equipment and making adjustments or tool changes where personnel may be exposed
to the unexpected energization or start-up of the equipment or a release of hazardous
energy.

Employers are required to establish (lockout/tagout) procedures and employee
training to ensure that before any employee performs any servicing or maintenance on
a machine or equipment where the unexpected energizing, start-up or release of stored
energy could occur and cause injury, the machine or equipment is isolated and rendered
inoperative. Most companies impose strong sanctions on employees who do not follow
the procedures to the letter. Many companies terminate employees who repeatedly vio-
late the procedures. The procedures are designed to keep personnel safe. Make sure you
follow procedures. You should also be aware of the penalties of not following them. The
greatest penalty could be severe injury or death.

CHAPTER 17—LOCKOUT/TAGOUT 413

Employers are also required to conduct periodic inspections of the procedures at
least annually to ensure that the procedures and the requirements of the standard are
being followed.

Only authorized employees may lockout machines or equipment. An authorized em-
ployee is defined as one who has been trained and has been given the authority to lock or
tag out machines or equipment to perform servicing or maintenance on that machine or
equipment.

An energy-isolating device is defined as a mechanical device that can physically pre-
vent the transmission or release of energy. A disconnect on an electrical enclosure is a
good example of an energy isolating device (see Figure 17-1). If the disconnect is off, it
physically prevents the transmission of electric energy. Energy-isolating devices include
disconnects, manual electric circuit breakers, manually operated switches by which the
conductors of a circuit can be disconnected from all ungrounded supply conductors and
no pole can be operated independently, line valves (see Figure 17-1), locks, and any
similar device used to block or isolate energy. Pushbuttons, selector switches and other
control-circuit-type devices are not considered to be energy-isolating devices.

Figure 17-1 Electric disconnect on the left and a pneumatic disconnect on the right.

There has been a requirement since January 2, 1990, that when new machines or
equipment is installed, energy-isolating devices for machines or equipment must be de-
signed to accept a lockout device. An energy-isolating device is capable of being locked
out if it has a hasp or other means of attachment to which or through which a lock can be
affixed or if it has a built-in locking mechanism. Other energy-isolating devices are capa-
ble of being locked out if lockout can be achieved without the need to dismantle, rebuild,
or replace the energy-isolating device or permanently alter its energy control capability.

414 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Lockout

Lockout is defined as the placement of a lockout device on an energy-isolating device in
accordance with an established procedure to ensure that the energy-isolating device can
ensure that the equipment being controlled cannot be operated until the lockout device
is removed.

A lockout device uses a positive means to hold an energy-isolating device in the safe
position and prevent the energizing of a machine or equipment. A lock used for lockout
may be a key or combination type.

Employee Notification

Tagout

Affected employees must be notified by the employer or authorized employee of the ap-
plication and removal of lockout devices or tagout devices. Notification shall be given
before the controls are applied, and also after they are removed from the machine or
equipment. Affected employees are defined as employees whose job requires them to
operate or use a machine or equipment on which servicing or maintenance is being per-
formed under lockout or tagout or whose job requires them to work in an area in which
such servicing or maintenance is being performed.

If an energy-isolating device is incapable of being locked out, the energy control
program shall utilize a tagout system. Tagout is the placement of a tagout device on an
energy-isolating device, in accordance with an established procedure, to indicate that the
energy-isolating device and the equipment being controlled may not be operated until
the tagout device is removed. A tagout device is a prominent warning device, such as a
tag and a means of attachment, which can be securely fastened to an energy-isolating
device in accordance with an established procedure, to indicate that the energy-isolating
device and the equipment being controlled may not be operated until the tagout device
is removed from each energy-isolating device by the employee who applied the device.
Tagout shall be performed only by the authorized employees who are performing the
servicing or maintenance.

When the authorized employee who applied the lockout or tagout device is not
available to remove it, that device may be removed under the direction of the employer,
provided that specific procedures and training for such removal have been developed,
documented, and incorporated into the energy control program.

Tagout devices must be affixed in such a manner as to clearly indicate that the opera-
tion or movement of energy-isolating devices from the safe or off position is prohibited.
Where tagout devices are used with energy-isolating devices designed with the capability
of being locked, the tag attachment must be fastened at the same point at which the lock
would have been attached. Where a tag cannot be affixed directly to the energy-isolating
device, the tag must be located as close as safely possible to the device, in a position that
will be immediately obvious to anyone attempting to operate the device.

CHAPTER 17—LOCKOUT/TAGOUT 415

Training

Training shall be provided by the employer to ensure that the purpose and function of the
energy control program are understood by employees and that the knowledge and skills
required for the safe application, usage, and removal of energy controls are required by
employees. Training should include

= The recognition of hazardous energy sources

= The type and magnitude of the energy available in the workplace

= The methods and means necessary for energy isolation and control

= A thorough understanding of the purpose and use of the lockout/tagout
procedures

All other employees whose work operations are or may be in an area where lockout/tagout
procedures may be used shall be instructed about the procedure and about the prohibi-
tion against attempting to restart or reenergize machines or equipment which are locked
out or tagged out.

When tagout procedures are used, employees must be taught about the following
limitations of tags:

= Tags are really just warning devices and do not provide physical restraint on
devices.

» When a tag is attached it is not to be removed without authorization of the autho-
rized person responsible for it, and it is never to be bypassed, ignored, or other-
wise defeated.

= Tags must be legible and understandable by all authorized employees, affected
employees, and all other employees whose work operations are or may be in
the area.

= Tags may create a false sense of security. Their meaning needs to be understood

by all.

Retraining

Retraining is required for all authorized and affected employees whenever there is a
change in their job assignments; a change in machines, equipment, or processes that
present a new hazard; or a change in the energy control procedures.

Additional retraining must also be done when a periodic inspection reveals or when-
ever the employer has reason to believe that there are deviations from or inadequacies in
the employee’s knowledge or use of the energy control procedures.

The retraining shall reestablish employee proficiency and introduce new or revised
control methods and procedures, as necessary.

The employer must certify that employee training has been accomplished and is be-
ing kept up to date. The training records must contain each employee’s name and dates
of training,

416

PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Lockout/Tagout Device Requirements

Lockout and tagout devices must be the only device(s) used for controlling energy and
must not be used for other purposes.

Lockout/tagout devices must be durable. They must be capable of withstanding the
environment to which they are exposed for the maximum period of time that exposure is
expected.

Lockout and tagout devices must be standardized within the facility in at least one
of the following criteria: color; shape; or size. Print and format must also be standardized
for tagout devices. Tagout devices must be printed and made of suitable materials so that
exposure to weather conditions or wet and damp locations will not cause the message on
the tag to become illegible or cause the tag to deteriorate.

Tagout devices, including the attachment device, must be substantial enough to
prevent inadvertent or accidental removal. Tagout devices must be attached with an
attachment that is non-reusable. Tags must be attachable by hand, be self-locking,
and also be non-releasable. They must have a minimum unlocking strength of at least
50 pounds. Lockout devices must be substantial enough to prevent removal without
the use of excessive force or unusual techniques, such as with the use of bolt cutters or
other metal-cutting tools.

An attachment device should have the general design and basic characteristics at least
equivalent to a one-piece, all-environment-tolerant nylon cable tie.

Lockout devices and tagout devices must identify the employee who applied the
devices.

Tagout devices must warn against hazardous conditions if the machine or equipment
is energized and shall include a clear warning such as Do Not Start. Do Not Operate.
Do Not Open. Do Not Close. Do Not Energize.

Application of Lockout/Tagout Procedures

The procedures for the application of lockout or tagout procedures shall cover the follow-
ing and shall be done in the following sequence:

1. All affected employees must be notified that a lockout or tagout procedure is
going to be used. All affected employees must understand the reason for the
lockout. Before an authorized or affected employee turns off a machine or
equipment, the authorized employee must understand the types and magni-
tudes of the energy, the hazards of the energy to be controlled, and the method
or means to control the energy for the machine or equipment being maintained
or serviced.

2. The equipment must be turned off or shut down using the procedures for the
machine or equipment. An orderly shutdown shall be performed to avoid addi-
tional or increased hazards to employees as a result of the equipment stoppage.

3. All energy-isolating devices that are needed to control the energy to the equip-
ment or machine shall be physically located and operated in such a manner as to
isolate the equipment or machine from the energy sources.

CHAPTER 17—LOCKOUT/TAGOUT 417

4. Lockout or tagout devices must be affixed to each energy-isolating device by au-
thorized employees. Lockout devices, where used, shall be affixed so that the
energy-isolating devices are held in a safe or off position.

5. Stored energy must be dissipated or restrained by methods such as reposition-
ing, blocking, bleeding down, and so on, after the application of lockout or tagout
devices to energy-isolating devices. If there is a possibility of reaccumulation of
stored energy to a hazardous level, verification of isolation shall be continued
until the servicing or maintenance is completed or until the possibility of such
accumulation of energy no longer exists.

6. Prior to starting service or maintenance work on machines or equipment that
have been locked out or tagged out, the authorized employee shall verify that
the machine or equipment has actually been isolated and deenergized. This
is done by operating the pushbutton or other normal operating controls to
make certain that the equipment will not operate. Warning: You must make
sure that the operating controls are returned to the neutral or off position
after the test.

The machine or equipment is now locked out or tagged out.

To Remove Lockout/Tagout Devices

Before lockout or tagout devices are removed and energy is restored to the machine or
equipment, procedures must be followed and actions taken by the authorized employees
to ensure that

The work area has been inspected to be sure that nonessential items, such as tools,
have been removed from the work area and to ensure that machine or equipment compo-
nents are operationally intact.

The work area has been checked to be sure that all personnel have been safely posi-
tioned or removed from the area.

Affected employees have been notified that the lockout or tagout devices have been
removed.

Each lockout or tagout device must be removed from each energy-isolating device
by the employee who applied the device. The only exception to this is that when the au-
thorized employee who applied the lockout or tagout device is not available to remove
it, that device may be removed under the direction of the employer, provided that spe-
cific procedures and training for such removal have been developed, documented, and
incorporated into the employer’s energy control program.

The employer must demonstrate that the specific procedure to be used if the au-
thorized employee who applied the lockout/tagout is unavailable includes at least the
following elements:

The employer must verify that the authorized employee who applied the device is
not at the facility.

All reasonable efforts must be made to contact the authorized employee to inform
him or her that his or her lockout or tagout device has been removed.

418 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

The authorized employee must be made aware of that his or her lockout/tagout
device was removed before he or she resumes work at that facility.

Testing of Machines, Equipment, or Components

Situations may occur in which lockout or tagout devices must be temporarily removed
from the energy-isolating device and the machine or equipment energized to test or
position the machine, equipment, or component. If this situation arises, the following
sequence of actions must be followed:

The machine or equipment must be cleared of tools and materials.

Employees must be removed from the machine or equipment area.

The lockout or tagout devices must be removed as specified in the procedure.

The machine or equipment must be energized and the testing or positioning pro-
ceeded with.

After testing, all systems must be deenergized and energy control measures reapplied
in accordance with the standard to continue the servicing or maintenance.

Group Lockout/Tagout

When more than one person is involved in maintenance, the risk of injury is increased.
When maintenance is performed by a group of people, they must use a procedure that
protects them to the same degree that a personal lockout/tagout procedure designed for
one person would.

The standard forlockout/tagout specifies requirements for group procedures. Primary
responsibility is vested in an authorized employee for a set number of employees. These
employees work under the protection of a group lockout or tagout device. This is typi-
cally a hasp (see Figure 17-2). The hasp allows several locks to be applied so that multiple
people are protected. The group lockout device assures that no one individual can start
up or energize the machine or equipment. All lockout or tagout devices must be removed
to reenergize the machine or equipment. The authorized employee who is responsible
for the group must ascertain the exposure status of individual group members with
regard to the lockout or tagout of the machine or equipment. When more than one
crew, type of maintenance personnel, department, and so on, is involved, overall job-as-
sociated lockout or tagout control responsibility is assigned to an authorized employee.
This employee is designated to coordinate affected workforces and ensure continuity
of protection. Each authorized employee working on the system must affix a personal
lockout or tagout device to the group lockout device, group lockbox, hasp, or com-
parable mechanism when she or he begins work. The individual shall remove those
devices when she or he stops working on the machine or equipment being serviced or
maintained.

CHAPTER 17—LOCKOUT/TAGOUT 419

Figure 17-2 A lockout hasp.

Personnel or Shift Changes

Specific procedures shall be utilized during shift or personnel changes to ensure the con-
tinuity of lockout or tagout protection. This ensures the orderly transfer of lockout or
tagout device protection between off-going and oncoming employees, to minimize expo-
sure to hazards from the unexpected energization or start-up of the machine or equip-
ment or from the release of stored energy.

LOCKOUT PROCEDURE FOR THE EXTRUDER
Purpose of the Procedure

This procedure shall be used to ensure that the extruder is stopped and isolated from
all potentially hazardous energy sources and locked out before employees perform any
servicing or maintenance where the unexpected energizing or start-up of the machine or
equipment or the release of stored energy could cause injury.

Employee Compliance

All employees are required to comply with the restrictions and limitations imposed on
them during the use of this lockout procedure. Authorized employees are required to
perform the lockout in accordance with this procedure. All employees, on observing a
machine or piece of equipment that is locked out to perform servicing or maintenance,
shall not attempt to start, energize, or use that machine or equipment. Failure to follow
this procedure exactly will result in the actions specified in the employee handbook.

420 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

Lockout Sequence for the Extruder

1.

Notify all of the affected employees that servicing or maintenance is to be done
on the extruder and that the machine must be shut down and locked out to per-
form the servicing or maintenance.

The extruder has pneumatic, electric, and heat energy sources.

If the machine or equipment is in operation, shut it down by the normal stopping
procedure.

. Deactivate the energy disconnects so that the extruder is isolated from the

energy sources. There are two disconnects: the electrical disconnect on the
electrical enclosure and the pneumatic disconnect on the air supply line to
the extruder.

. Lock out the two energy-isolating devices with your assigned locks according to

the procedure.

The pneumatic disconnect released the air pressure in the system when you
turned it off and applied your lock. Heat energy still exists. The protective guard
is in place to protect you from exposure to the heat energy. If you have to remove
the guard for service, you must wait one hour after disconnecting the energy and
applying your locks before you remove the guard. Carefully check for residual
heat before continuing.

You must ensure that the extruder is disconnected from the energy sources by
first checking that no personnel are exposed. Next verify the isolation of the
equipment by operating the operating controls to make certain the equipment
will not operate. Caution: You must return the operating controls to neutral or
off position after you verify the isolation of the equipment.

. The extruder is now locked out.

RETURNING THE MACHINE OR EQUIPMENT TO SERVICE

When the servicing or maintenance is completed and the machine or equipment is ready
to return to normal operating condition, the following steps shall be taken:

Check the machine or equipment and the immediate area around the machine to
ensure that nonessential items have been removed and that the components are
operationally intact. Check the work area to ensure that all employees have been
safely positioned or removed from the area.

After all tools have been removed from the machine or equipment, guards have
been reinstalled, and employees are in the clear, remove all lockout or tagout
devices. Verify that the controls are in neutral and reenergize the machine or equip-
ment. Note: The removal of some forms of blocking may require reenergization of
the machine before safe removal. Notify affected employees that the servicing or
maintenance is completed and the machine or equipment is ready for use.

CHAPTER 17—LOCKOUT/TAGOUT 421

EXAMPLE OF A LOCKOUT/TAGOUT CHECKLIST
Notification

I notified all affected employees that a lockout is required and the reason for the lockout.

Date Time Signature
Shutdown
I understand the reason the equipment is to be shutdown following the required
procedure.
Date Time Signature

Disconnection of Energy Sources

I disconnected or isolated each energy source from the machinery or equipment as speci-
fied by the procedure. I have dissipated or restrained all stored energy such as springs,
elevated machine members, capacitors, rotating flywheels, pneumatic and hydraulic sys-
tems, and so on.

Date Time Signature

Lockout

I locked out the energy-isolating devices using my assigned locks.

Date Time Signature

Safety Check

After ensuring that no personnel were exposed to hazards, I operated the start button and
other normal operation controls to ensure that all energy sources were disconnected and
that the equipment would not operate.

Date Time Signature

OUTSIDE PERSONNEL WORKING WITHIN THE FACILITY

When outside maintenance or servicing personnel are to be engaged in activities covered
by the lockout/tagout standard, the on-site employer and the outside employer must in-
form each other of their respective lockout or tagout procedures. This would include
contracted employees. The on-site employer must ensure that his or her employees un-
derstand and comply with the restrictions and prohibitions of the outside employer’s
energy control program.

422 PROGRAMMING CONTROLLOGIX® PROGRAMMABLE AUTOMATION CONTROLLERS

QUESTIONS

L oo

© P 1w

10.
11.
12.
13.

Who developed the lockout/tagout standard?
What is the purpose of the standard?
List at least two examples of stored energy.

List at least three sources of energy that are typically found in an industrial
environment.

Define the term lockout.

Define the term tagout.

What is an authorized employee?

What is an affected employee?

What is an energy-isolating device?

Are normal production operations covered by the standard?
What is a hasp used for?

Describe the typical steps in a lockout/tagout procedure.

Write a lockout/tagout procedure for a cell that contains electric and pneumatic
energy.

APPENDIX

A

Starting a New Project in ControlLogix

There are three basic steps in starting a new project. First you name the project and
configure the project for the correct CPU and slot, software revision, and chassis type.
Next you should set a path to the CPU. Third you add the required I/O modules. RSLinx
should be configured with the correct Communications Driver to be able to communi-
cate with the CLX controller you would like to program.

Open RSLOGIX 5000 and Select File and then New Project. The screen shown in
Figure A-1 should appear. First you must choose the correct type of processor. In this

Vendon Salhers &< ey

Ty L AR onmoll ognS555 Contcller = (1]

Flgrautingm 113 nd| Cancel
Fladundancy Enabiled Helo

Yoare :'” athwe_Lonfsgl

Dewcrphon

Chassie Type: | 175410 1050t Contsoll onetn (Pt g -

Sigh o -

Crnabe Loy :" Lonfsolloge and sabety\ingul o #esmese

Figure A-1 New project configuration screen.

424

APPENDIX A—STARTING A NEW PROJECT IN CONTROLLOGIX

example the processor is a 1756-L55. Next choose the correct RSLogix 5000 Revision
(software level). It is 13 for this example. Next you must name the project. Machine_
Control was the name chosen in this example. You must also be sure to choose the correct
chassis type. You may change the location where it will be created. In this example the
path chosen was E:\ControlLogix and safety\input mods.

A path to the controller’s CPU should be set next (see Figure A-2). In this figure
the path is blank yet. You can choose the down arrow of the RSWho icon to the right to
choose a path. If you select the RSWho icon, the screen in Figure A-3 will appear.

1~ RSLogix 5000 - Machine_Conltrol [1756-.55)

alwia] 8 [ve] [

—— TR 1 T A —
NoFosces B, ™ ox . I —_l—”
Mo Edks é .“' - A e] | | | | | 3
sl 1! |\|. e e

Figure A-2 Project screen. Note that the path has not been set yet.

Click on the CPU you would like to program and then choose Set Project Path.
Figure A-3 shows that the CPU in slot 0 in the backplane was chosen for the CPU. In this
example the path went through an RSLINX Ethernet devices driver.

= Y Workgtaton, APPF 13106 -~ Go Onine I
+ ffy Uro Gateways, Etharrat 1
= oy AB_ETH-1, Etherret Ugload I
s § 10418921, 175608T/A, 1 756-08T/A
10.4.189.32, 1754-ENBT/A, | TS6-DMT/A | Dowanlinad |
-M!M 1756-A100A
00, 17S6-LSHA LOGDSESS, I7S6-ASWA 1756 M2/AL0GDEsss | _Updete Fimmare
01, 1796-IB16JA, 1756-B16/A DCIN 1 —
02, 1756-I16/A, 1756-B16/A DCIM —,
03, 1756-COI6E/A, 1756-CR16E/A DCOUT EPUSE Heo |
04, 1756-0B16E/A, 17S6-0B16E/A DCOUT EFUSE |
05, 17S6EET/A
06, 1756-OMBJA, | 756-DMIA Devicetiet Scanews
07, 1756-MOBSE, 8 Axis SERCOS interface
w N 08, 1796-M005E, 3 Aus SERCOS interface &
Pahy AB_ETH N0 4189 1\B ackplare’\D Set Proyect P

Path in Propect <none> —— I

Figure A-3 Path configuration screen.

APPENDIX A—STARTING A NEW PROJECT IN CONTROLLOGIX 425

Then you can select Close to close the RSWho screen and you will see that the path
now appears as shown in F igure A-4.

" RSLogix 5000 - Machine_Control [1756-L55]°

alsia] @ (ol ol 3 slmia) v @) 22|

Olfhne 0. W Run - 2 Patx [AB_ETH1\104 189 2\Backghare\D | HI
4 W4T - =l

Mo Forcas | B = ox

¥ gar ' o =
Mo £ dits a2 4 =l | |||| 3
admdany l-!.w . !l’l\la.--;!r'. ¥ iy 6oty e

Figure A-4 Note that the path has been set.

Next you should add any modules that the application will require. Figure A-5 shows
the Controller Organizer. Note that I/O Configuration is shown on the bottom but no
modules have been added yet.

1 Contoller Machine_Control
&) Controlber Tags
L2 Controllier aull MHardier
(1 Prownr U Handior
: -4 Taaks
= @ ManTash
o LB Mairbrogy am
(3 Unachadiuliod Progy amd
£33 Mottion Grougs
L0 Ungronged Aves
3 Teerds
=5 Data Types
g User -Defired
& (g strngs
- tﬁ vt e
g Mo O e
5 1O Configuration

L]

Figure A-5 Controller Organizer with no modules added yet.

To add a module, you must right-click on the I/O Configuration icon and choose New
Module. The screen shown in Figure A-6 will then appear. You can choose the module
from the list of available modules. In this example a 1756-IB16 was chosen for the input
module. Select OK, and the screen in Figure A-7 will appear.

426 APPENDIX A—STARTING A NEW PROJECT IN CONTROLLOGIX

Select Module Type

Twe [1756816

L!Ev Deoscrghon |
TSEENET A 1 7% Esheeret Commurncahion bnded ace -~
TSEENET B 1796 E theenet Badige

1EEWER/A 1756 107100 Mops Edwenet Badige wErhanced Web Senices

[756-HSC 17% bgh et Connter

1756 HYDO2 2 s Myl Sarvo 1

7564416 16 Pant 7913V AC Input

1 7554a08 16 Point 7913V AC leolatad brget

[75680 8 Pont 79130V AL gl

[7568160 16 Point 10V-30V DC Dsagnostic ingun

175648161 16 Pont 10V-30V DC sclated bnput. Sink/Sousce

TE8 8508 16 Charewl lsclated 24V bnput Sequence of E vents

qusm 32 Pont 10V-31 2V DC lnpus

1756818 RPont IV NVOCIput _ ~
St
Vendoe |4l =] FOote W Specay0 Selectar |

P Andog ¥ Dol & Communcaton W Moon & Consoller Cluuil|

o | _Cocet | e |

Figure A-6 List of modules that can be added. Note that a 1756-IB16 input module is high-

lighted in the list.

Next you must choose the Major Revision for the module you are adding. In this
example the Major Revision was 2. The revision level is shown on the side of the module.
You can also use RSLinx to find the revision level of the module. The use of RSLinx will
assure that you have the right revision in case the module firmware was upgraded.

Select Major Revision

Select Magor Rle bor 17551816 Module Profile
buewrny Cooatend -

_Apture inage Frint Sorda

Magr Revmon © :]

o | Cwesd | Heo |

Figure A-7 Select Major Revision screen.

APPENDIX A—STARTING A NEW PROJECT IN CONTROLLOGIX 427

Figure A-8 shows the Module Properties screen for the input module that is being
added. The name entered was Input_Mod_1. It is located in slot 1. The keying method
chosen was Compatible Module.

Concl | o | Nets | Feenn | He |

Figure A-8 Module Properties screen for the input module.

Figure A-9 shows the Controller Organizer after the input module was added.

o &5 Controller Machine_Control
A Controller Tags
(3 Controller Faulk Mardier
L] Powese U Handier
= &5 Tasls
= L MainT k.
+ L Mardrog am
£ Urnchoduled Programs
= 5 Migtion Geoups
3 Ungrenped Aces
() Trends
=5 Data Types
gt Lser-Defired
= iiﬁw
= Ly Pvadefined
+ L Moduie-Defired
= &5 1O Configyur ation
9 (1) 17561816 Irput_Module_I

Figure A-9 Controller Organizer with input module added.

428 APPENDIX A—STARTING A NEW PROJECT IN CONTROLLOGIX

Next the output module will be added. Right click the I/O Configuration icon in the Con-
troller Organizer and choose New Module. The screen shown in Figure A-10 shows the mod-
ule selection screen that will appear. The output module for this example is a 1756-OB16E
output module. This is a 16-output electronically fused module. Then select OK.

Select Module 1ype

Descephon |
16 Pont 78v-285 AL Isckatesd Ounpul -~
8 Pount 74V-265¢ AC Duput

8 Pownt 74V 13V AL Dragrosse Ounput

8 Port 78V 110V AL Electsonically Funed Output

16 Pont 19 V30V DC Dsagnoste Ouiput

16 Powa 10V-30V DC lacliared Ousput, Srb/Source
16 Part 10V-30V DC Isclabed Scheduled Dulput, Sink/Sousce

32 Pont 10v-31 2V DC Ousput

8 Pont 10V-30V DC Output

8 Powt 10V-30V DC Elechonncally Fused lsclated Oungut %

& Pownt 30V-E0V DC Duput

& Channel Non dsolated Volage/Cument Anallog Dunpe

& Chanrvel lrclabed Cument Anallog ODutpul -

- Show
Verdor |41 =] © ote B specayio _ Seaa |
W Anaog ¥ Digtadl ¥ Communicaton @ Moton & Contoller Chllll
o | Concw | Heo |

Figure A-10 Note that a 1756-OB16E was chosen in this example.

Next the Select Major Revision screen will appear (see Figure A-11). The Major
Revision level for this module was 2. Select OK.

Select Major Hevniion

Selloct Mayor Rew for 175608168 Modiule Profiie
bwng Croatendt

Magon Rewion, | :J

o | Cocel | W |

Figure A-11 Select Major Revision screen.

CAPPENDIX A—STARTING A NEW PROJECT IN CONTROLLOGIX 429

The Module Properties screen then appears (see Figure A-12). Enter a name for the
module, choose the slot where it is located, enter the minor Revision level, and choose
the keying method for this module. Then select Finish.

Module Properites - Local: 2 (1756 08161 2.1)
Tyoe 17560816 16 Pont 10v-31 2V DC Electsonically Fused Ouipat
Veraior ddbees 1 ey
Pavert Local
Norw [Ourous_Modue_1 Sk [
este] |
Comen Fomsat: | CST Trmmotamped Fuse Data - Oupus Data -
Revmnon |_ I‘ 5 Elnchorsc Keying | Companbie Modue — w|
Cancal | i Nt > I Firuth >> | Help I

Figure A-12 Module Properties screen.

Note that this module was named Output_Module_1 in this example. The module is
in slot 2. Compatible Module was chosen for the method of keying.
Figure A-13 shows the Controller Organizer after the modules have been added.

3 Contyolier Tags
(3 Contrallier #ant Mardlion
L P L Mardien
£5 Tasks
= EE@ MainTank
o LB MarPyogy as
(3 Unichvediubod Progr st
=i 5 Mottion Groups
L3 Ungrouped Axes
£33 Trends
o Data Types
(it User-Dafirmd
Lk Prodefined
o Ui Modbe-Dafined
£5 1O Configuration
= (1] 17560006 Bngutt_Modile_1
[3) 17%56-0B14E Output_Modulle 1

1

Figure A-13 Controller Organizer after an input and an output module were added.

430 APPENDIX A—STARTING A NEW PROJECT IN CONTROLLOGIX

You are now ready to program. Click on the + next to the MainProgram folder in
the Controller Organizer shown in Figure A-13. Program Tags and MainRoutine will
appear in the Controller Organizer as shown in Figure A-14. Double-click on Main-
Routine, and the programming screen will open up as shown in Figure A-15. You are
now ready to program.

E Controllier ¥ags

L3 Conttroller Fault Hardior

(3 Prowr-LIp Hanidior

- a 'w
- MainT ash
- q W“

Frogram Tags
Mqit oo it

Figure A-14 MainRoutine in Controller Organizer.

I FOLORIE JUAR Mac hine (

nlrel [1756155] Maind ropram
‘ T i T il i i

i]ﬂ.'lﬂl.!l_u_l_l_ll < &l b RIEISLI
Offhne 0. W AN -m AB_ETH-I\10.4 189 32\Backphene\0

No Edhs a::;' o] e O] o]

SR T e L ¥) . ‘ l » l\l sycillen Tivin Gl bor Y IEY Y]

am'w ~ rlﬂ o 3|

3 Power-LUp Handier
= & Tashs
= 8 ManTank
= L MairProg aem
D Program Tags (Eruf) |

0

L L

b oo
3 Unnichwediuliod Py ogy ams
=S5 Motion Groups
(53 Ungrouped Axes

Figure A-15 Programming screen.

APPENDIX

B

Configuring I/O Modules in a Remote Chassis

Supply

A controller in one chassis can own modules in another chassis. Remember that output
modules can only have one owner but multiple controllers can own the same input mod-
ule as long as they are configured exactly the same.

Figure B-1 shows an example of a simple system. There are two CLX systems in the
figure. This appendix will show how to configure a project so that the controller in one
chassis will own and control an output module in a different chassis. The project will be
configured so that the controller on the left of Figure B-1 will own the output module in
slot 3 of the CLX system on the right. Remember that no other controller can own the
module. Note also that there is an Ethernet Bridge module in each chassis. ControlNet
would also work, but this example uses Ethernet.

Controller Remote Controller
| 10418922 i 10.4.189.32

=0 3= 0 FT-=m
@30 FT=+m

Figure B-1 Two CLX systems. Note that each chassis has an Ethernet module.

It is a relatively straightforward process to configure a project to use remote 1/O.
It really just involves adding cards that will provide a path under the I/O configuration
for the project. Consider the system in Figure B-1. The path from the controller would
be through the backplane of the Ethernet module that resides in the same chassis, then
out the Ethernet module to the Ethernet module in the remote chassis, and then through
the backplane to the module in slot 3. The path involves three modules and begins with
the Ethernet module in the controller’s chassis.

432 APPENDIX B—CONFIGURING I/O MODULES IN A REMOTE CHASSIS

Figure B-2 shows the Project Organizer screen. You need to add modules under the
I/0 Configuration folder. To do this, you right-click on I/0O Configuration and choose
New Module. The screen shown in Figure B-3 will then appear.

= £33 Controlier Remote_Output_Mod
A Controller Tags
L1 Controler Fault Mardien
L3 Powse-Up Handier
- 2] Taghs
= @ MainTank
Prograe Tags
Sl o
3 Unachadiuled Prograss
= = Motaon Groups
L Ungronged Aved
) Trerais
= Data Types
S U D
. :‘ Serings
. =_-_‘ Prexod e
g Modue-Onfirad
(3 1o Configuration

Figure B-2 Controller Organizer before any modules were added.

Select the communications module. In this example it is a 1756-EBET/B module.
Then click on OK.

Desciplion

1756 Dervacaties Scarrae
TS ENEF A 1756 107100 Mibps Ethemnet Brdige. Fiber Medla
TEENBT /A 1756 100100 Mbps Eoheret Bacige. Twisted Pan Mecka
1756 ESweenet Commurncston infed ace

1756 107100 Mbps Edwenst Badige w/E nhanced Web Services

TS6-HSC 1756 Hagh Speed Courter

TEAHNDOR 2 At Hydhadie Servo

A6 16 Pont 79130V AL bngust

TEwe 16 Pont 79v:1 32V AL Isolsted bnput

756 4A80 8 Pont 79v-132V AC Diagnostic bngat

T8 16 Pont 10V 31 2V DC brgust

7568160 16 Pont 10v-30V DC Deagrostic bnput

S8 16 Part 10V 30V DC lachabed bogutt. Sinb/Sonnce -
S

Vendor |41 =] B ootw P spiyin _ Sesas |
W Andog M Dgtd M Communcaton & Moson & Conteoller Chear Al I

ok | Cocw | W |

Figure B-3 Select Module Type screen.

APPENDIX B—CONFIGURING I/0 MODULES IN A REMOTE CHASSIS 433

Next the module must be configured (see Figure B-4). The IP address for this mod-
ule is 10.4.189.22. The module is in slot 1 of the chassis so 1 was entered for Slot. The
correct Revision level should be chosen for the module. A name is also entered for the
module. In this example the module was named Ethernet_Local. Compatible Module

was chosen for the Electronic Keying type. Then Finish can be selected, and the screen
in Figure B-5 will appear.

Module Properties - LocalY (1756 -EMNET/A 2.1)

N [Em_l.n-cd Addrers / Mot Namw
Dencegton « P Addert l 10 4 m . 2
" Hot Name: |

w 3

Rewionn [T [T 2] Eecwonckepng [Compatbie Modie)

Corcel | | mets | ey | Hee |

Figure B-4 Module Properties screen.

Figure B-5 shows the Controller Organizer after the Ethernet module was added.
Notice the name of the module, Ethernet_Local.

= 24 Controller Romote_Output_Mod
A Controller Tags
L3 Conitrollier Fandt Marvdir
(3 Powse-Up Mardier
= 2 Tashs
= (@ ManTank
= £ Marfrogram
Prograe Tage
MR ot
53 Unactvadiulied Programs
= 455 Mation Grougs
3 Ungrouped Axes
1 Trends
= = Data Types
g Uner Dl
. .'E," Strngs
+ L Prodefiond
o L Module- Oefired
= 54 WO Conffigur ation
§ (1) 1756-ENET/S Exterrwet_Local

Figure B-5 Controller Organizer after the Ethernet module was added.

434 APPENDIX B— CONFIGURING I/0 MODULES IN A REMOTE CHASSIS

Next you must add the remote Ethernet module. This must be added under the
Local Ethernet module that was just added. Right-click on the Ethernet module
(Ethernet_Local) that was just added and choose New Module. The screen in Figure B-6
will appear. Choose the correct module. In this example the 1756-ENET/B module was
chosen. Choose OK and the screen in Figure B-7 will appear.

Select Module Type X

g II?'.GUEI!B

Type Decrphon]
150 SMC Flow £ 150 SMC Flem wa 2000MM £ -
173-AENT /A 1734 Edhennat Adapter, Tested Pan Madia |
ITIBAENT JA 1778 Edvenrt Adapier, Twnsbed Paw Moda ‘
1756-ENBF/A 1756 V0/100 Mgt € @it Budige Fibar Modia E
17SE-ENST /A 1756 107900 Mogs Edwenst Badge. Twibed Par Meda 1
17SEENET /A § 7% £ dhwamnind Comsmunit ation bnded ace ;
1755 EWEB/A 1756 10/100 Mg Eheenst Badge w/E nhanced Web Services
1757 FFLD/A 1757 Foundation Fasldbus Linkung Device
[\ 757 FFFC/A 1757 Foundaton Fisldbus Process Conteollies
(1765 L€ Evhwonnnt Post 10100 Mbps Edwenst Post on Compaciloge5S3I0E
1763 LI5E Edwenet Post 100100 Mbps Edhwenst Post on Compaci ognSI5E
788 EN2ON/A 1768 Edheenet b0 Devicaet Linking Device
1TEBENST/A 1768 10/100 Mbps Ethwenat Badge. Twiated Par Meda »
Shioww

Verdoe | 41 =] P O%e @ Speciabyi0 Selectal |

W Andlog W Dglad ¥ Commuricaton ™ Moton W Contolles Clunlll

o | Coest | Hew |

Figure B-6 Select Module Type screen.

Next the module’s properties must be configured (see Figure B-7). The name
Ethernet_Remote was entered for the name. The IP address was entered (10.4.189.32).
The module is in slot 5, so 5 was entered for Slot. Make sure the correct Revision level is
set. Compatible Module was chosen for the Electronic Keying type. Select Finish, and
the screen in Figure B-8 will appear.

APPENDIX B—CONFIGURING I/0 MODULES IN A REMOTE CHASSIS 435

Tyge 17SEENET /8 175 Edwenet Communicaton intedace
Vierdion ellers ¢ vy
Paremt Ethwnret_Local

Name = Addvess / ot Name
Dercrgmon = | G PAddes | 0. 4 8. X
T Host Name: |

Comen Format | Rack Ogamzaton -l
Shot Ig 3 Mhl'o 3

Revision '_[I_E Electonc Keying | Compatbie Modde w)

Coce | _cBock | Wet> | Fushy | e |

Figure B-7 Module Properties screen.

Figure B-8 shows the Controller Organizer after the remote Ethernet module was
added. Note the name on the module is Ethernet_ Remote. Also note that it was added
under the first Ethernet module.

-;e &5 1O Conffiguration
= § [1)17%-OET 8 Bhernet_Local
9 (%) 1756-00ET 8 Exhernat_Remcte

Figure B-8 Controller Organizer after the remote Ethernet module was added.

436 APPENDIX B— CONFIGURING I/0 MODULES IN A REMOTE CHASSIS

When this module is added, controller tags are automatically generated as shown in
Figure B-9. They can be seen in the tag editor.

Scope IM_OM_HO:]
P | Vag Name &

Figure B-9 Controller tags for the Ethernet module.

Next you need to add the actual I/O module, in this example an output module.
Right-click on the second Ethernet module that was added. Choose New Module and the
screen shown in Figure B-10 will appear. In this example a 1756-OB16E output module
was chosen. Then select OK.

e Dewcrpron]
17560416 16 Pont 74v-2657 AC Output -~
16 Pownt 74v-265 AC lsolabed Ounput
8 Paint 78V-265V AC Ousput
8 Pont 7813V AC Duagnontie Ouput

B Point 78132V AL Electsorncally Funed Duigur
16 Paint 15 V30V DC Grurgn

16 Pount 10V-30V DC lsclated Dutput, Sinb/Sousce
32 Pownt 10V-31 2V DC Ousput

8 Pont 10V-30V DC Ousput %

8 Powt 10V-30V DC Eloctorncally Fused Lolabed Dubgas 3

8 Pont 30V-60V DC Ousput

& Charemi Yo §sciiatend Vol age. Cument Anaig Oubgad

& Charell | soiiabed Cument Anailog Oubput v
S ;
Venddor |20 *| P Ot ¥ Specialyl/0 Select Al |

W Anaog ¥ Dighd ¥ Communcaton & Moton @ Conwoller Ch.lll

o | Coed | M |

Figure B-10 Select Module Type screen.

APPENDIX B—CONFIGURING I/0 MODULES IN A REMOTE CHASSIS 437

The correct Major Revision level is set next (see Figure B-11). Choose OK, and the
screen shown in Figure B-12 will appear.

Select Major Revision

Select Magon Rev for 1755-0816E Madulle Profiie I
g oot

M e F iz |2‘ 1]

ox | Cwest | Hep |

Figure B-11 Major Revision level entry screen.

In Figure B-12 the module was named Remote_Output_Module. The module resides
in slot 3. Compatible Module was chosen for the Electronic Keying type. A Comm (com-
munications) Format must be chosen. In this example Rack Optimization was chosen.
Rack Optimization and the other choices are covered in Figure B-13. Choose Finish, and
the screen in Figure B-14 will appear.

Module Properties - Eihernel Remote:D (1756081168 2.1)

Type 1756-0816E 16 Pont 10vV-31. 2V DC Electronucally Fused Output

Vo e &« e

Pasart Ethonnen_Feomote

Name [Fromute Ougnr Mot L

ian |

Comm Fommat | Flach Ogtecaton -

— I_ [‘ 3 Ehectonnc Kowng | Ccoguabiie Modie -
Cll:d] Jllurl Frd\»j Hﬁ]

Figure B-12 Module Properties screen.

438 APPENDIX B— CONFIGURING I/0 MODULES IN A REMOTE CHASSIS

The remote chassis contains only analog None
modules, diagnostic digital modules, fused
output modules, or communication modules.

The remote chassis only contains standard, Rack Optimization
digital input and output modules (no diagnostic
or fused output modules).

You want to receive I/0 module and chassis Listen-Only Rack Optimization
slot information from a rack-optimized remote
chassis owned by another controller

Figure B-13 Comm Format choices.

Figure B-14 shows the Controller Organizer after the output module was added.
Notice the name on the module (Remote_Output_Module). The configuration is com-
plete at this point. If you look in the tag editor screen you will see that tags have been
automatically added for the module. The actual outputs are in the tag named Ethernet_
Remote:3:0 (see Figure B-15).

= 4 Controlles Resobe Outpul JMod
) Controller Tags
I Controller Fault Handier
Ll Prownse - Mamdien

&) Taibs

& £ Miokiom Grouges
5 Teards

L Data Types

= &=y O Configuration
= § [1) 1756-E0ET 8 Exherrt_Local
= § [5) 1756-00ET 8 Exhornet_Remote
5 (3] 1756-0816E Remote_Outgut_Modide

Figure B-14 Controller Organizer after the output module was added.

S hugnr &)

Scope [ﬁi amote_Ouipul_Mo _':l g
P | T ag Name & | Ao For
+ Ethernet_Remote |
+ Ethemrnt_Remote 0
+ Ethesrnt_Remote 31 Ethuennet_Remote
+ Ethomat_Remote 30 Ethomnet_Remote
+ Ethomwe_Remote 3C

Figure B-15 Tag editor screen showing the tags that were added when the module was added.

HEEN

APPENDIX
C

The Use of Producer/Consumer Tags

Producer/consumer tags provide an easy means for a processor to provide data to other
controllers. By using the producer/consumer model, data can be transferred between
processors without any logic. The user can choose the Requested Packet Interval (RPI)
for the rate at which data should be updated. Data can be transferred between DINT-
type tags, an array, or a User-Defined data type.

THE PRODUCED TAG

The produced tag is the easiest part to configure. In the CLX controller that will be the
producer, the user simply creates a controller Scope tag and configures it as produced.
The name of the produced tag in this example is Produced_Tag (see Figure C-1). Itis a
DINT. Note the check mark in the P column. P stands for Produced.

Marking a tag produced enables the tag to be available to consumed tags in other

controllers.
l"ll'al_@’t‘n . lo'-ilna'.f-un lﬁ"‘" Tag l-'c"" l

* p & Produced Tad DIN T
*IIr

Figure C-1 A controller Scope tag named Produced_Tag. Note the check mark in the
P column. This makes the tag a produced tag.

440

APPENDIX C—THE USE OF PRODUCER/CONSUMER TAGS

Figure C-2 shows how it appears in the Tag Properties screen.

i Tag Properties - Produced_Tag b

General” | Conrection|

Naw [Produced_Tag
Descaphon

TagTee Base

" Alas

~ Produced

" Conmmed
DataTyoe [omit _] el |
Scope [Produce_CLX

[0] comcw | teor | no |

Figure C-2 Tag Properties screen for the tag. Note that the Tag Type is Produced. Note also
the Connection tab on top of the screen.

If you click on the Connection tab, you can set the maximum number of consumers
that are allowed to connect to the produced tag (see Figure C-3). The allowed values are
1 to 256. One other controller will be allowed access to this tag in this example. You can
also send event triggers to consumers using the IOT instruction in logic.

i Tag Properties - Produced Tag DX
General Connection |

Mawemn Conaumers [\ 2]

™ Progamesadically POT Inatuchion) Send € vent Tagger o Conmumsers

Figure C-3 Tag Properties, Connection parameters. In this example only one other controller (con-
sumer) will be allowed to get the data for this tag because 1 was entered in Maximum Consumers.

That is all you have to do in the Producer controller.

APPENDIX C—THE USE OF PRODUCER/CONSUMER TAGS 441

THE CONSUMED TAG

Next a project must be developed for the controller who will be the consumer of tag
data from the produced tag. Create a new project in a different controller. Set a path and
add any I/O modules you need for your application. In this example only communication
modules will be required.

First, you must create a communications path to the processor where the tag is being
produced. Then the consumed tag can be created.

Figure C-4 shows an illustration of the two CLX systems. Note that each chassis has
a controller and an Ethernet module. They are both attached to the Ethernet network.
Information for this example will use the Ethernet communications network. Other
networks such as ControlNet could have been used. Note that the Ethernet module is in
slot 7 in the Producer Controller and in slot 6 in the Consumer Controller.

Consumer ka l;ef
SN Consumer Tag REIO Produced Tag
L 7 10.4.189.2 ! / 10.4.189.21
/ E f E
|’JI T { s §
/ H / n
Power / E Power / e
Supply / § Supply p
J : J H
< © :
A

Figure C-4 The CLX systems used in this example.

In the CLX project organizer (see Figure C-5), a path will need to be configured
to the processor that has the produced tag. Referring back to Figure C-4, you see the
module path from the consumer CLX must be established to the producer CLX.
The path will be through the Ethernet module in the consumer CLX chassis, through
the Ethernet module in the producer chassis, and finally to the controller (CPU) in the
producer chassis.

To add the Ethernet module in the consumer chassis, right-click on the I/O Configu-
ration folder in the Controller Organizer (see Figure C-5). After you right-click, you will
choose New Module and the screen shown in Figure C-6 will appear.

442

APPENDIX C—THE USE OF PRODUCER/CONSUMER TAGS

= &5 Controller Congumer_CLX
&) Controller Tags
L0 Controllen Fault peardion
L3 Powese U Mardier
= &5 Yaghs
= (8 MainT ek
+ L Mardrog am
o Unschadullod Progyass
- T MoRioe G
L0 Ungrougeed Axes
1 Traruds
= £5 Data Types
G User-Dafirad
- :‘w
g Moe eded
3 190 Confuguration

Figure C-5 Controller Organizer before the modules have been added to create a path to the
Produced tag.

Next you must choose the correct module. The module in the consumer chassis is
a 1756-ENET/B module. This is a 1756 Ethernet Bridge module. Then select OK. The
screen shown in Figure C-7 will appear so that you can configure the module.

Ty Dercrepon]

1756 0MEB 30 1756 SBI000 Deve indedace -~

1756 0M0 30 17% SDI000 Deve Intedtace

| 756-DMF 30 1756 SFI000 Dewve Intedtace

1 756.0M8 175 Devicaiet Scanver e

1 756 ENBF A 1756 107100 Mg Edhmennt Badge. Fiber Madia

17SEENBT A 1756 107100 Miga Edhwenet Budge, Twmted Par Meda

1 TSEENET /A 1756 E et Conmpmurncamon bnded aco

1756 EWEB/A 1756 107100 Mg Esheenat Badgs w/Enhanced Web Services

1 7SEHSE 1756 Hagh Speed Countes

1756 HYDO2 2 At My andhc Sares

1756416 16 Part TV AL bngut

1TSS 16 Pont 79V 132V AL Inolished bngut

1 7SEAASD 8 Point 79V1 12V AC Duasgraoate ngaut v

Shicww)

Veneoe |4 > ¥ 0t © Specialyl0 SelectAl |

¥ Anaig W Digldl ¥ Commumcaton & Moton & Conivollies Ch-AII
ok | caee | Hep |

Figure C-6 The screen to select the module type.

APPENDIX C—THE USE OF PRODUCER/CONSUMER TAGS 443

In the Module Properties screen in Figure C-7 you enter a name for the module. You
must enter the IP address of the Ethernet module. You also enter the Slot that the mod-
ule resides in and the Revision. You can choose the keying method for the module.

Module Properties - Local:1 (1/56.INLTM 2.1)

Shoe
Rewon [[2] ElecwoncKenng [CompabieModide v

Cocel | o0 | mets | Fenn | hew |

Figure C-7 Module Properties screen.

When you choose Finish, the Controller Organizer displays the module as shown in
Figure C-8.

= =3 Controller Congumer_CLX
w Controller Tags
[Controllier it reamidhen
2 Powesr-LUp Mardlior
= Tasks
= 8 ManTash
o B MarPveg ae
) Unictecdulied Progy s
= 5 Motion Groups
L Ungrougeed Aot
1 Tremds
= 5 Dats Types
-Ei]
- :‘ Shrings
o Ly Provefied
G
=5 YO Configuration
§ (6] 17S6-ENETB Exherret_Modde_Coraumer_Chasss

Figure C-8 Controller Organizer after the module was added.

444 APPENDIX C—THE USE OF PRODUCER/CONSUMER TAGS

Next you must add the Ethernet module in the other Chassis (producer CLX chassis).
This one will be added under the first Ethernet module. Right-click on the Ethernet
module that you just added. Choose New Module.

Next you will choose the correct module as shown in Figure C-9. The module in this
example is a 1756-ENET/B module. This is a 1756 Ethernet Bridge module. Then select
OK. The screen shown in Figure C-10 will appear.

Select Module [ype

Troe [I7SGENET/A

e Descrphon |
150 SMC Flewk 150 SMC Flew wa 2000MM £ ~
173 AENT /A 1734 Edvernet Adapter. Twited Par Media '
17IBAENT A 1738 Evenrat Adapter. Twisted Par Media '
1796 ENEF /A 1796 100100 Mbps Edheenst Badge. Fiber Madia 3
INEENET /A IHSIMWWNEWW Tanitens & an Meda |
17SEENET /A 1796 Edhaenet Compmuncaton bnbed ace |
1755 EWEB/MA 1756 10900 Mg Edaenst Badge w/Enhanced Web Services
1757-FFLD/A 1757 Foundahon Frsldiue Linking Device
1757 FFPC/A 1757 Foundamon Fielidiue Peocess Contsollien
763 L30E Evhwennt Post 10V1000 Mbpe Edviennt Post on CompaciLogeS 108
1763LE Edwmnat Post 107100 Mbgs Efwenat Post on CompactLogeSII5E
N 7E8-ENZDN/A 1768 Edwenet 10 DeviceNet Linking Device
1TEBENBT A 1768 107100 Mbps Edveenet Badge. Twinted Par Media ~
Shiown

Verdoe | 4 *| P 0twr O Specalyl/0 SelectAl |

W Andog ¥ Dgtal W Communcaton ™ Moton & Conteoller CluAll

o | Coest | Hew |

Figure C-9 Select Module Type screen.

In the Module Properties screen in Figure C-10, you enter a name for the module.
You must enter the IP address of the Ethernet module. You also enter the Slot that the
module resides in and the Revision level. You can choose the Electronic Keying method
for the module. The last thing to choose is the Comm Format. Rack Optimization was
chosen in this example.

APPENDIX C—THE USE OF PRODUCER/CONSUMER TAGS 445

Module Properiies - tithernel Module Comsumer Chassmn |

Tyoe
WVendior
Parent.
Marse
Descnpion

VTSEENE T /8 1 756 £ dusenet Comennncation bnted ace
Sl & ity

Emennet_Module_Conaumer_Chastn
[Em_m_macu_cwm

~ Addess / Hot Name

@ PAddes | 10 . 4 89 2

T Host Name: |

Comen Format |Rach Ogamzaton |
St 2] owsese[i0 4

Revwon [[3 4] ElechoncKeying [Compatie Modbe v)

w I L ach | Mot o | FM » I Hﬁ I

Figure C-10 Module Properties screen.

Figure C-11 shows the Project Organizer screen after the Ethernet module in the
producer chassis was added.

s) Controber Congumes_CLX
= £ Tashs
- S8 ManT ash
o L Mardrog e
T Uk heduliedd Py aesd
w2 Motson Groups
(23 Trends
(3 Data Types
= 5 YO Configuration
= § (6] 1756- 0T 8 Erharrat_Module_Consuser_Chassis
§ 7] 17508 Extwrnat_Module_Produced_Chassis

Figure C-11 Project Organizer screen after the Ethernet module in the producer chassis was
added.

So far you have a path from the Ethernet module in the consumer CLX chassis to the
Ethernet module in the producer chassis. Lastly you must add the controller (CPU) that

446 APPENDIX C—THE USE OF PRODUCER/CONSUMER TAGS

produces the tag. Right-click on the Ethernet module you just added and choose New
Module. The screen in Figure C-12 will appear. Choose the type of controller, 1756-155
in this example. Then click OK, and the screen shown in Figure C-13 will appear.

Select Module]”w

Ty Ill'!&l.%

%ﬁ- Descaphon |
TSeATE & Charmnal | solated Tharsocouple Anallog brgul -~
7561812 6 Channel |solated Themsocoughe Analog ngut - Enhanced

756 NV16/A 16 Port 10V-30V DC bngut, Sounce

756 0VI2/A 32 Pont 10V-30V DC bngut, Sounce

175601 Conteoll oguS550 Contsolion

756053 Conoll. 3 Compoilies

1 756 LEOMOTSE ConmolLognSSEIMITSE Cantollier

1756051 Contsoll oguS5561 Contsollion %
N 756-L62 Contollogu562 Conteolier

756163 Conteoll ogu5563 Contsollion

[7%6-M0DULE Garwem 1 756 Madhie

17560416 16 Pont 76v- 265/ AC Oupus

1 756-0A16 16 Pont 78V- 265 AL | solated Output -
Shwower
Vendor |4 »| V0% W Specalyl0 SelectAl |
W Andlog W Dgtel ¥ Communication & Moton & Conolier Dtmlll

ok | Cowe | Hoo |

Figure C-12 Select Module Type screen.

Choose the correct Major Revision level for the producer controller.

Select Major Revision

Seliect Mayoe Fav bor 1 756-L55 Module Prollie
bewrig Croatedt
Mayx Revamon |13 -l

o« | Coest | e |

Figure C-13 Select Major Revision level screen.

APPENDIX C—THE USE OF PRODUCER/CONSUMER TAGS 447

After you enter the Major Revision level, click OK, and the screen shown in
Figure C-14 will appear. Enter a name for the producer controller as well as the Slot that
it resides in. Then click the Finish button.

Module Propeities - Lihernel _Module Mroduced Chassia: 0 (17961053 13.1)

CIHI -wllhl)lFM»lMl

Figure C-14 Module Properties screen.

Now the Project Organizer screen looks like Figure C-15. Note that this now pro-
vides the path to get the data.

L3 Prowatr-Uip Marichen -~
= 5 Tashs
= €8 ManTask
LB Mamivogy am
1 Urcheduled Programs
= 5 Motwon Groups
L3 Ungyrouged Aves
L3 Trends
= £5 Data Types
Cit User-Dafird
. 5‘ Strings %
o Lgh Pvadefired
e
= £5 YO Configuration
= § 16) 1756-ENET/B Etherrnt_Module_Corumer_Chassis
= §) 1750678 Dhernet_Module_Produced_Chass
8 (0] 1756155 Producer_CPU d

< i L

Figure C-15 Project Organizer screen after the producer controller module was added.

448 APPENDIX C—THE USE OF PRODUCER/CONSUMER TAGS

The last thing to do is create the consumed tag. In this example the consumed tag
was named Consumed_Tag (see Figure C-16). It is a DINT type for this example.

Figure C-16 Tag editor showing the consumed tag that is named Consumed_Tag.

Figure C-17 shows the Tag Properties screen. Note the Tag Type is Consumed and
the Data Type DINT.

Comumed | ag

Yo [Consumed_Tag

TagToor " Base
Al
© Produced
* Conumad

JONT =] Cortgue |
[Conmume:_CLX

[Oecmal =l

gi’

[0] cwee | meow | Hew |

Figure C-17 Tag Properties screen.

APPENDIX C—THE USE OF PRODUCER/CONSUMER TAGS 449

Next click on the Connection tab on the Tag Properties screen. The screen shown
in Figure C-18 appears. In this screen the Producer controller is chosen from the drop-
down list (Producer_CPU in this example). Then the name of the produced tag in the
remote controller is entered (Produced_Tag in this example). A value is also entered for
the RPI (5 in this example). This determines how often the tag is updated.

i Tag Properties - Consumed_Tag o X
Genma® Connection’ |

Froducer [Produces_CPU <]

Remote Datas |Pruduced_Tag
(Vg Narse: oo bratamce Numier)

APy B0 e 20 - 750.0 ma)

o Cocel | Ao | meb |

Figure C-18 Tag Properties screen.

At this point both controllers should be put into run mode. Type a number into the
produced tag. Figure C-19 shows the number 55 has been entered into the Produced_
Tag in the tag editor. The number should then appear in the consumed tag in the other
controller. Figure C-20 shows the tag editor screen in monitor mode.

450 APPENDIX C—THE USE OF PRODUCER/CONSUMER TAGS

Figure C-20 Monitor mode in the tag editor screen in the consumer controller.

APPENDIX

D

ControlLogix Messaging

Supply

This appendix will show how messaging can be configured and accomplished between
two CLX controllers.

The producer/consumer model is very efficient for transferring data between
processors, but if the data transfer does not need to occur at periodic intervals, you may
be able to conserve network bandwidth using the message (MSG) instruction. Using the
MSG instruction, data can even be received (or sent) from another processor, even if that
processor is not present in the I/O Configuration tree.

For this example, consider an MSG instruction that will read data from another Con-
trolLogix processor and store that data in a memory location in your controller.

Below, you can see the path to take to connect to the target processor. Once the con-
nection is made, the Temp_In array tag in the controller on the left will receive data from
the Temp_Remote array tag in the controller on the right each time the MSG instruction
is executed.

Controller Remote Controller
| 10418922 i 10.4.189.32

“+@ 3= F=+m
=@ 3=~0FT—=-m

Figure D-1 The two CLX systems.

452 APPENDIX D— CONTROLLOGIX MESSAGING

CREATE REMOTE TAGS

The first step is to create the tag in the remote CLX controller. In this example the tag is
in the controller on the left of Figure D-1. Figures D-2 and D-3 show a DINT-type array
tag named Temp_Remote was created and has ten members. It was created as a control-
ler Scope tag. The Temp_Remote[0] array will be the memory location that another con-
troller can read from. Data will be put in this tag’s members, so the controller that reads
from the tag can test the connection.

i Tag Properties - Temp_Out -] b

Nare |7 omp_Remote
Detcnpion

Tag Tyoe * Bawe
" Alae
" Produced
" Conaumed

DataType: JOmTNIO) | tontigue |

ox. Cocel | Ao | heb |

Figure D-2 Tag Properties screen.

APPENDIX D— CONTROLLOGIX MESSAGING 453

x

Figure D-3 Select Data Type screen.

SETTING UP THE CLX CONTROLLER FOR MESSAGING

Next you need to configure the CLX controller that will be utilizing the MSG command
to get information. You need to establish a communications path for it to access the infor-
mation from the remote CLX controller. You will utilize the Ethernet modules in the two
controller chassis for the communications path. Figure D-4 shows the Controller Orga-
nizer before any modules have been added.

= &5 Controlier Message_in
&) Controller Tags
) Comtroller Fanlt Mandier
20 Powr-Lip Marudior
- 4 Tadhs
= 8 ManTash
. “ MRy Cady
£ Unacthadulled Programs
= 4 Motion Groups
L Unigrouped Aces
L Tramse
= & Data Types
L :i Srings
. :‘ Vet i
o g Mioste D
L3 1O Configuration

Figure D-4 Controller Organizer screen before any modules have been added.

454

APPENDIX D— CONTROLLOGIX MESSAGING

The first module that was added in this example was the Ethernet module. To do
this, right-click on the I/O Configuration shown in Figure D-4. Choose New Module.
The screen shown in Figure D-5 appears. A 1756-ENET/B module is chosen. Click on
OK, and the screen in Figure D-6 appears.

Select Module fype
Tyoe Descrphon |
1 75E-DMATD 1756 SAIN0D Dave bnberdace -
1795 0MAT 1756 SATI00 Deave Intedace
1 756 DMASD 1755 SASDD Dewve Indodace _
1 755008 30 1756 SBI000 Dewve bndeddace 4
1755000 30 1796 SO3000 Dave Intedace
1756008 30 1756 S5 3000 Dewve Intord ace
1756 0N8 1756 DevicaMlet Scanmon
1 7SE-ENBF /A 1755 100100 Mg Eshaennt Badge. Fiber Meda
1TS6ENST /A 1756 107100 Mogs Ethomst Badge Twted Par Media
1 TSEENET A 1756 E sheenet Communication bedace
1TSS EWER/A 1756 10,100 Mbge Esheenet Badge w/Enhanced Web Services
1756-HSC 1756 Hagh Speed Counter
17% HYDOR 2 i Mydhaulc Servo v
- Shygue
Verdor | Al e R |
W Andog ¥ Dot ¥ Communcaton & Moton & Conolier CIu:Al'
ok | Coece | e |

Figure D-5 Select Module Type screen.

In the screen shown in Figure D-6 the IP address was entered (10.4.189.22). The
Ethernet module is located in slot 1 so 1 was entered in the Slot. Compatible Module was
chosen for the Electronic Keying method. Click on the Finish button, and the screen in
Figure D-7 appears.

APPENDIX D— CONTROLLOGIX MESSAGING 455

-~ Adidvens / Hont Name -

@ WPAddesz | 10 4 189 2

" Host Name: |

Skt :
Revion. [[1T 2] ElcwonicKaying [Compantie Modde)

Cancel I Each l MNewt > l FM»I Help I

Figure D-6 Module Properties screen.

Figure D-7 shows the Controller Organizer after the local Ethernet module was added.

[~ 71 Controller Mesiage_n
A Controber Tags
1 Centreiler ¥ ik viarudior
(7 Prowner Ui rearclier
= =5 Tasks
= CE MainT sk
= £ ManProgram
£ Urnischwdluiend P oy ames
= 5] Migtion Grongss
23 Ungrouped Axes
0 Trands
= Eigcu Types
L Vser-Defirned
& Cgh Strngs
& Lk Prociefined
o L Mo Owfirwd
= £ 1O Configuration
9 (1] 1756-DET/0 Bhormet_Local

Figure D-7 Controller Organizer after the Ethernet (Ethernet_Local) module was added.

456 APPENDIX D— CONTROLLOGIX MESSAGING

Next you must add the Ethernet module in the remote chassis. Right-click on the
Ethernet module that was just added and choose New Module. Choose the correct mod-
ule from the list shown in Figure D-8. In this example a 1756-ENET/B module was
chosen.

Select Module [ype

Ty [I?ﬁﬁl‘llﬂ

Decrgmon |
1755 10/8 00 Mbpa Edhbenet Badge. Fiber Media -
1756 10000 Mbgs Edwent Badge. Twisked Par Meda

1 755 € shoennnt Communntation kb ace

1756 107100 Mbps Ethienst Badge w/Enhanted Web Serices
1757 Foundaton Freldbus Linking Device
1757 Foundahon Fisldbue Process Confeolles
1071010 Mg Edwenet Post on CompaciLogeSII0E =
107100 Mg Efwnnat Pot on CompactlognS305E

17618 Eheennt ko Devicatiet Linking Device

1768 10/ 00 Mbpe Edwenst Badge. Twinted ©ar Mada

1768 10/ 00 Mbpa Ehwenet Badge w/E nhanced Web Services

1758 100100 Mbps Edheenet Adapier, Filer Media

1798 10100 Mg Edwenet Adagher, Twibed Pan Meda v

Vandor | Al > ¥ 0t P Specily O Sd-uhll
W Andog ¥ Dgtal ¥ Communcaton W Moten @ Conoller Clulll

o | Cacel | Hew |

Figure D-8 Select Module Type screen.

The IP address for the remote Ethernet module was entered (10.4.189.32) in this
example (see Figure D-9). A 5 was entered for the Slot, and Compatible Module was
chosen for the Electronic Keying method.

APPENDIX D— CONTROLLOGIX MESSAGING 457

Ty 1TSSENET /8 1755 Ethwent Communication Intedace
Verdor Slberts B+ acieny
Pavent. Eshwnnad_Local

Nt Fm_m - Addvers / Mo Name
Descsiphion . & P Adders I 0.4 1@ R
© Host Name: |

Comen Format. | Rach. Optmzation =
w3 owssmf 3

Rewn [[2] EwchomcKewng [Compmbie Modke v)

L‘-MI ?wwlllﬂ:blﬁnlh»l MI

Figure D-9 Module Properties screen.

Figure D-10 shows the Controller Organizer after the second Ethernet module was
added. Notice it was added under the first Ethernet module.

= £ Controller Metsage_in
& Controller Tags
(23 Controiler Fan Mardisn
£33 Powon-Utp Haredion
- T aibd
= @ ManTah
o B Marbrog e
£ Unachaduled Programe
= 5 Moo Growges
(53 ungrouped Aces
(0 Trends
= &5 Data Types
L U Ottt
+ L strngs
+ L Predefiong
+ Cgh Moduie-Onfined
= &5 1O Configuration
= § [1) 17%6-0ET 8 Eharret_Local
9 (5] 1756-0ET/0 Etherret_Remote

Figure D-10 Controller Organizer screen after the Ethernet (Ethernet_Remote) module was
added.

458 APPENDIX D— CONTROLLOGIX MESSAGING

The last thing that needs to be done is to add the CLX controller module that is lo-
cated in the remote chassis. Right-click on the Ethernet module that was just added (see
Figure D-10). Choose New Module. Choose the correct controller from the list shown in
Figure D-11. In this example 1756-L55 was chosen. Then select OK.

Select Module Type

175616 16 Point 10V-30V AC bngust -~
1 75E-E & Chanrel lsclabed R TD Anallog bngut

1SR & Charnwl lncliasted Thessocoupie Analog lnput

1EATE2 6 Chanewl lsclabed Thessocouple Analog nput - Enhanced

1755 NVIEA 16 Point 10V-30V DC Input, Sousce

1756V 32 Powt 10v-30V DC bngutt. Sousce

17%41 Contsoll o550 Contsciler

17956453 Contoll. 3 Conteciles 4
1756 LEOMOSE Control b ELMOTSE Cortociber 1
1756061 Conivollogn551 Contoller

1SEL62 Controll ognS562 Contecilien

1756063 Conivoll. o563 Conteoller

1TSEMODULE Gersme 1756 Module ~
Shiou :
Verudor | Al »| P 0tw © Specialyl0 SelectAl |
W Ansiog ¥ Digtal ™ Commumcation & Moton & Contsoller Clwlll

o | Coew | Heo |

Figure D-11 Select Module Type screen.

Enter the Major Revision as shown in Figure D-12, and then choose OK.

Select Major Hevislon

Seloct Mayor Fev bor 1 756L55 Maodule Proflie
beweg Croabed
M qycr Flasngmn, ||3 El

ok | Coe | Heb |

Figure D-12 Select Major Revision level screen.

APPENDIX D— CONTROLLOGIX MESSAGING 459

Next enter the name for the module as shown in Figure D-13. Choose the correct
Slot, 0 in this example. Then choose Finish.

Cocel | oo | Nets | Fwh | Hee |

Figure D-13 Module Properties screen.

The Controller Organizer now shows the controller has been added (see Figure D-14).

=] Controller Message_in
D Controer Tags
L1 Canitrolier Fadh Marder
LT Bowmn LD Marudher
= 5 Tahs
= @ ManTask
+ L Marfrogas
£ Unachedulied Progy ame
= 5 Mation Groups
53 ungrouped Aves
3 Trends
= 5 Data Types
gt Lser-Defred
& Lgh Prediefined
i 5 1O Configuration
= § [1) 17968078 Exhenriot_Local
= § [5) 1756078 Ohwrree_Remote
§ (0] 1756455 Remote_CPU

]

Figure D-14 Controller Organizer screen after the controller (Remote_CPU) module was
added.

460 APPENDIX D— CONTROLLOGIX MESSAGING

The path is now complete. Next the logic can be developed and a tag to receive the

data from the remote tag can be entered.

MESSAGE COMMAND AND LOGIC

A MSG instruction is shown in Figure D-15. A tag name must be entered for a control
tag for the instruction. In this example the tag is named MSG_Control_Tag and its type is
Control. When this instruction is true, it will read the specified tag in the remote control-

ler and put it in the local tag that will be specified.

Wbt taipe Tomme 04

Whas smpe _Timmr (104 Al

Figure D-15 Logic for the MSG instruction.

Yhe s cmge Tieer

Click on the ellipsis on the MSG instruction to configure it. The screen shown in
Figure D-16 will appear. CIP Data Table Read was chosen for the type. The Source El-
ement is the name of the tag in the remote controller. The Number Of Elements to
be read is 10 as the tag is an array tag with 10 members. The Destination Element is
the name of the tag to which the tag data from the remote controller should be written
(Temp_In[0] in this example). The table in Figure D-17 shows the possible choices for

the MSG instruction.

APPENDIX D— CONTROLLOGIX MESSAGING

461

Message Configuration - MSG_Control_Tag

Configuation” | Commurication| Tag |

Massage Type { O Data T able Read

[Tomp_Remcte(0)
Nusbes OF Elemares: |10 -

Sonnce £ oot

Destnation Eloment |1 emp_bnf0]

O Enadle O Enable Walkng Q St

® Dore Dorwe Lengty 10

O Esoe Code Espervded Emon Code ™ Tewed Ou e
Emor Pathy
Emcn Test
o Cancel | Acoly Halo

Figure D-16 Message Configuration screen.

Target Device to Communicate With Select

Logix5000 Controller

CIP Data Table Read

CIP Data Table Write

I/0O Module that you configure using RSLogix
5000 software

Module Reconfigure

CIP Generic

PLC-5 Controller

PLC5 Typed Read

PLC5 Typed Write

PLC5 Word Range Read

PLC5 Word Range Write

SLC Controller
MicroLogix Controller

SLC Typed Read

SLC Typed Write

Block Transfer Module

Block-Transfer Read

Block-Transfer Write

PLC-3 Processor

PLC3 Typed Read

PLC3 Typed Write

PLC3 Word Range Read

PLC3 Word Range Write

PLC-2 Processor

PLC2 Unprotected Read

PLC2 Unprotected Write

Figure D-17 Message Type choices.

462 APPENDIX D— CONTROLLOGIX MESSAGING

Remote_CPU was entered for the path in Figure D-18. This is the name of the con-
troller in the remote chassis (see Figure D-14).

Message Conliguration - MSL Control _lag

O Enablle O EnableWakng O Swn ® Do Done Length 10

© Emor Code Esteniod Emor Code: ™ TewdOue

Emon Pathy
Emor Toutt

ok | Cowel | Ak | He |

Figure D-18 Message Configuration, Communication screen.

The Tag tab was then chosen in the Message Configuration screen. MSG_Control _
Tag was entered for the name of the control tag (see Figure D-19).

APPENDIX D— CONTROLLOGIX MESSAGING 463

Message Conliguration - M5G_Control_lag

Corfiguaton’ | Communicaton Tag |

Nare |MSG_Conmol_Tag
‘

TagTyoe Base

M‘ﬂ Iug AGE
O Enatle O Enable Walng O Stat ® Dore Dore Lang®y 10
O Esor Code Estendied Emor Code ™ Tewsd Qe
Emon Path
Emor Tentt

ok | Cocel | Aok | Hw |

Figure D-19 Message Configuration, Tag screen.

CREATING THE TAG IN THE CONTROLLER

A controller Scope tag was created in the tag editor (see Figure D-20). The tag name is
Temp_In. This is the tag to receive the data read with the MSG instruction. Note that the

tag is an array of 10 members of Data Type DINT.

464 APPENDIX D— CONTROLLOGIX MESSAGING

Nawm II emp_in

Descaphon

4

TagTywe & Bae

" Alas
C Produced r_j pepaw,
" Contumed

DataType: [OmTIO J |

Scope | Message_inicortsoler) -l
Style [Decemal -]

Figure D-20 New Tag configuration screen.

MSG LOGIC

Next the logic is created. Figure D-21 shows the logic that was used for this example. In
this example the timer DN bit is used to execute the instruction once every 5 seconds.

Mazsape_Timer D00 . fom .
| — — 1 Timas On Dl 10—t
Y= *1”_'”)
Fepert SO0
AL s mte
Mbasampe _Vimar DN ’ hil
' ' ' £ Typd - OF Data Taltlie Read L '
Mibers samge Corlnool aSG_Comtrol_Tag -0 -

Figure D-21 Logic for the MSG routine.

APPENDIX D— CONTROLLOGIX MESSAGING 465

Figure D-22 shows the tag array in the remote controller. Note the numbers in the
10 tag members.

Figure D-22 Remote tag in the tag editor.

Figure D-23 shows the tag array in the controller that is running the MSG instruc-
tion. Note that the numbers that the instruction read from the remote tag members are
written in the tag members’ Value in this controller.

Figure D-23 Tag in the tag editor in the controller executing the MSG Read instruction.

This page intentionally left blank

APPENDIX
E

Configuring ControlLogix for Motion

This information is written to help configure a motion project for RSLogix 5000. The
objective is to correctly configure all the parameters for the drives and motors when a
new motion project is developed. The configuration of the drives and motors should all
be correct before beginning to develop the logic.

Start a new ControlLogix project. Click on Controller Properties, click on Properties,
click on the Date/Time tab (see Figure E-1), click on Make this controller the Coordinated

v Semal Post Stk Proho o Usar Prodocol
File Feduridandy Hiorreciahie Merory Moeriry
Mayoe F il Mewe § il s Date/Tim’ Advarced | SFC Eweculion

v Maka #u conmoller e Cooedinated 1\ DANGER M the weng i clessed

Sytrers e it orire mtheee auet i any corieles
B chassn, o Chiass

Eaaerier i 8 e Redk SR,
o Sencheorined i 5 suaiten

9 Drugihc ate satter Seto et

i
|
|

D I3 e master syrachecnded by Synchlnd say |

2 T hardmare Lanibedd I

[] cocs | tor | 4o |

Figure E-1 Configuring the controller to be the Coordinated System Time (CST) master.

467

468 APPENDIX E—CONFIGURING CONTROLLOGIX FOR MOTION

System Time master, and click OK. This makes sure that this CPU will coordinate the
motion of all the axes.

Next we need to add the SERCOS card and the drives. In this example there are two
drives that control two axes of motion. Figure E-2 shows the controller organizer before
the modules have been added.

= =i Comtroller X_Y_Axit_Motion_Propec
&) Controller Tags
L3 Controller Paulk randien
= &5 Tashs
= & MainT b
s L Marivog as
L) Unchsdiulled Progy e
= =3 Molion Gnoups
L Ungyougad At
L] Teards
= 24 Datta Types
Lk Usr -Owfineed
o L Srings
+ Ly Predefined
g Mo Owfined
=1 O Configurattion

Figure E-2 Controller Organizer before any modules have been added.

Here is a quick overview of what needs to be done.

I/O modules need to be added to the project as well as the SERCOS module. Then
the axes have to be configured to operate correctly in the application.

First add the SERCOS module. Right click on I/O Configuration in the Controller
Organizer. Choose New Module, and the screen shown in Figure E-3 will appear. In this
example a 1756-MOSSE module was chosen. Select OK.

APPENDIX E—CONFIGURING CONTROLLOGIX FOR MOTION 469

Select Module Type

16 Auny SERCOS Intertace
Gereec 1 756 Modie
16 Pownt 76v- 265V AC Qungaut
16 Pt 74V-265¢ AL | sollabed Ougut
B Port 74V- 2685 AC Ouspen

B Point 74V-1 32V AC Duagnostic Ougul v
Shiowe

| P 08w Specalyl0 S-I-uAI|
W Anslg ™ Digtal ¥ Commuricabon @ Motion ¥ Conteolies cum'

o | Cwmes | Hee |

Figure E-3 Select Module Type screen. Note that a 1756-M08SE module was chosen.

Next the Module Properties screen will appear. SERCOS_Module was entered for
the name. A 4 was entered for the Slot of the module. The Revision level was also entered.
Compatible was chosen for the Electronic Keying method. Then Finish was selected.

Module Properiies

ecal1 (1756 MOBSE 13.1)

Figure E-4 Module Properties screen.

470 APPENDIX E—CONFIGURING CONTROLLOGIX FOR MOTION

The SERCOS module is now shown under the I/O Configuration folder in the Con-
troller Organizer in Figure E-5.

= &5 Comtroller X_¥_Axis_Motion_Propect
) Controller Tags
L3 Controllier # il parcion
L Powsr-Uip Mandlien
= &5 Tashs
= £ ManTask
o B MarPvog e
[Unschadiulled Progy ass
= 55 Motion Groups
L Ungroupad Axes
1 Teeruhs
= =4 Data Types
i User Oefipund
L] ._‘ s‘]m
o g Predelied
L Modiulle- Ovelied
= &4 JO Conffiguration
9 (4] 1756-M08SE SERCOS_Module

Figure E-5 Controller Organizer screen after the SERCOS module was added.

Drives must be added under the SERCOS module. The drives must be named and
configured. A tag must also be created for each axis. Right-click on the SERCOS mod-
ule that was just added in the Controller Organizer and choose New Module. Figure E-6
shows that a 2098-DSD-010-SE drive was selected for this application. The correct model
number for the drive can be found on the drive. After OK is selected, the screen shown in
Figure E-7 will appear.

APPENDIX E—CONFIGURING CONTROLLOGIX FOR MOTION 471

Kimetie S000. S50VALC AM . 04 Cont . £54 Peak
Kimetw SO00. SE0VAL. AM. 454 Cont . 794 Peak
Kinet G000, S50VALC AM. &4 Cont. . B4 Paak
Uit 3000, 230vAC. SERCOS Dave. 2 54 Conit . 7 54 Pealk

UlaZ000, 230VALC. SERCOS Dave. 104 Cont.. 304 Peak
U000, 230VAC. SERCOS Dave. 154 Cont., J04 Peak
U000, 230VALC, SERCOS Dave. 354 Cont, 794 Peak
UlaJ000, 230VAC. SERCOS Dave. 654 Cont., 1504 Peak
UteaJ000, 460VALC. SERCOS Dave. 74 Cont . 144 Peak

Uiea3I000. 460VALC. SERCDS Dave. 114 Cont.. 224 Peak
Ui 3000, $50VALC. SERCDS Dave. 234 Cont.. 454 Peak
UeaJ000. S50VALC. SERCDS Dave. 344 Cont. . 684 Peak
UieaJI000. S50VAC. SERCDS Dawve. 474 Cont.. 304 Peak v

Vendor |4l > P 0ter W Specaiyl0 Sd-uﬂl|
W Analog ¥ Dgtd ¥ Communcaton & Moton & Consalier uum|

J—l

ok | Cacel | hew |

Figure E-6 Select Module Type screen.

Figure E-7 shows how the drive is configured. This drive was named X_Axis and 11
was entered for its Node address. The Node address is set on the front of the drive for
this model on two dials. The Node address must be set to the same Node address on
the actual drive. The drives are addressed to 11 (X_Axis) and 22 (Y_Axis). The correct
Revision level was chosen and Compatible Module was chosen for the Electronic Keying
method. The Next button was chosen, and the screen shown in Figure E-8 appeared.

472 APPENDIX E—CONFIGURING CONTROLLOGIX FOR MOTION

Module Properties - SIRCOS Module (209805001051 1.1)

Tpe 2088050 010SE Uina3000. 230VAL. SERCOS Deive. 54 Cont.. 154 Peak

Vendor AlleryBsadiey
Nome PCAm_Dove Nonder Il'l 5
e

Reviion | [T =] ElechonicKeying [Companble Modde -l

Figure E-7 Drive Name and Node number configuration.

In the screen shown in Figure E-8 you must create a New Axis tag as there is none in
the selection list that have been previously created. Click on New Axis and the screen in
Figure E-9 appears.

Mo dule Propertiws SLRLOS Module (2098-D50-010-58 1.1)

Node 11 |<mone = | Now e |

WI(MIM)IMnIMI

Figure E-8 Module Properties tag selection screen.

APPENDIX E—CONFIGURING CONTROLLOGIX FOR MOTION 473

The tag name for the X_Axis is entered as X_Axis in the screen shown in Figure E-9.
Its data type is Axis_Servo_Drive. OK is then selected, and the screen in Figure E-10

appears.
Descrpmon

x

ddd

TagTspe & Base
Al
T Conmmmd
DataTopw [1535_SEAVO_DAME | _contigee_ |

Scog 1Y e _Masion_Proecticannolle w |
ol | =

Figure E-9 New Tag screen.

Figure E-10 shows that the New Tag X_Axis was chosen for the tag for this axis. Then
Finish was selected.

Module Properties - SIRCOS _Module (2098 D50 -010.5E 1.1)

Node 11 [CAm =l | Neow his_ |

Cocel | cBack | Mets | Fen | e |

Figure E-10 Module Properties screen.

474 APPENDIX E—CONFIGURING CONTROLLOGIX FOR MOTION

Figure E-11 shows the Controller Organizer after the first drive and its tag was added.
Note the X_Axis tag under the Ungrouped Axes folder and the X_Axis_Drive under the
SERCOS_Module.

= &5 Contwelier X_Y_Axis_Motion_Progect
&) Controller Tags
=1 Conitrollier Faulk Handier
R
= £5 Toshs
= C8 ManT ash
B Mg as
1 Unscheduled Progyass
= &= Migtion Groups
= 3 Ungrougad Avs
 OxAs
L Tronds
= &5 Data Types
g User Dot
s L Strings
o L Pvedefinmd
L Mol Defirved
=4 1O Configur atiion
= § [4) 1756-M08SE SERCOS_Module
& 11 2098-050-010-SE X_Axis_Drive

Figure E-11 Controller Organizer screen after the drive and tag were added for the X_Axis.

Next you must add the second drive. Right-click on the SERCOS module in the
controller organizer and choose New Module. Choose the correct drive from the list in
Figure E-12. A 2098-DSD-010-SE drive was selected for this application.

APPENDIX E—CONFIGURING CONTROLLOGIX FOR MOTION 475

Ty [2960S00105E

205M-BC07 M0 Virveti 600D, SGOVAC. VAM, €SK\W P'S. €34 Cont., 734 Peak ~

206k EM01 Kinatic 6000, 450VAC. AM, 34 Caont.. 134 Poak

2004 02 Kinati G000, S50VAC. AM, 154 Caont.. 224 Peak

2004 6000 Kinatie 6000, SG0VAC. AM, J0A Cont.. 454 Poak

s B Kinatic 6000, 450VAC. AM, 494 Caont. 794 Pesk

2018t GV Kinatix 6000, 450VAC. AM. 44 Cont.. 64 Peak
Uika3000, ZIVAC. SERCDS Deive. 254 Cont.. 7.54 Peak {
U300, 230VAC. SERCDS Deve. 104 Cont.. J0A Peak

UlsaJ000, 230VAC. SERCDS Deve. 154 Cont.. J0A Peak

ey Uia3000, 230VAC, SERCOS Deive, 654 Cont., 1504 Peak

o Ui 2000, 460VAC. SERCDS Deive. 7A Cont., 144 Pesk

o Ul 2000, 60VAC, SERCDS Deive, 114 Cant., 224 Pk v

- Showe '
Vardor |4 > P Ot © Specialyl0 SelectAl I

W Andlog ™ Dgtal ¥ Communcaten ™ Moton W Conmollier thllll

o | Cowel | He |

Figure E-12 Select Module Type screen.

Figure E-13 shows how this drive is configured. This drive was named Y_Axis and 22
was entered for its Node address. The Node address must be set to the same Node ad-
dress on the actual drive. The correct Revision level was chosen and Compatible Module
was chosen for the Electronic Keying method. Finish was chosen, and the screen shown
in Figure E-14 appeared.

476 APPENDIX E—CONFIGURING CONTROLLOGIX FOR MOTION

Module Properties - SIRCOS Module (£098-D5D-005-58 1.1)

Tyoe 2086050-005-5E Uleal000. 230VAC. SERCOS Dave. 254 Cont. 754 Peak

Verdor Al Beadbey
Nome [V A Dove Node 2+

Descrphon |

Revision. [m Electoric Keyng | Companbiie Mocde » |

le I Nt » I FM»I el I

Figure E-13 Module Properties screen for the Y_Axis drive.

Next a tag must be created for the Y_Axis. The New Axis button was chosen and the
screen in Figure E-15 appeared.

FO98-D5D 005 58 1.1)

Module Properiies SIRCOS Module (/

Node 22 |<m> ;IJ Mg s I

C.ndlcldlﬂd»ll-‘ﬂ»llﬂbl

Figure E-14 Module Properties screen for the drive.

APPENDIX E—CONFIGURING CONTROLLOGIX FOR MOTION 477

Y_Axis was entered for the Y_Axis tag name. The Data Type for the tag is AXIS_
SERVO_DRIVE. Then OK was selected.

I

Mew lag

Naee rrm

|
4

Tag Tyoe " Bae
Al
" Conumed
DataType: [55_SERVO_DRIVE | _Contigue_ |

Scopn Y _Aam_Moten_Propecticonisole w |
Style | =]

Figure E-15 New Tag screen for the axis drive configuration.

The Y_Axis tag was selected for the axis in Figure E-16. Then Finish was chosen.

Module Properties SIRCOS Module (2098 050D -005-58 1.1)

Node 2 [V Am =] | New 2|

Ccnl]tMllI-nJ I-'nln»l Hﬁ]

Figure E-16 Module Properties screen for the Y_Axis drive tag.

478

APPENDIX E—CONFIGURING CONTROLLOGIX FOR MOTION

Figure E-17 shows what the Controller Organizer looks like at this point.

3 Conmolier Moion
5 Tosks

=455 Motion Groups

= 5 Ungrowged Aved
o X _Axis
D ¥_Ads
(3 Tronds
(=) Data Types
5 YO Configyur atiion
(2] 1756-0814E Output
- 4] 1756-#0ESE SERCOS _Intorface
11 2098-050-010-5€ X_Axis
22 2058-05D-010-5€ ¥ _Axis

Figure E-17 Controller Organizer after the drives were added under the SERCOS module
and after the tags were created. Note the tags under the Ungrouped Axis folder.

Next you need to create a Motion Groups tag. Right-click on the Motion Groups
icon in the Controller Organizer and add a new group. The screen shown in Figure E-18
should appear. The motion group tag was named X_Y_Motion_Group.

N PY_Motion_Geoup oK I
Descnpony Cancel I
e |

Tag Type = Bae

(™™

7 Produced l_-j

" Comumed
DaaType: [MOTION_GROUP _] Canfigue |
Scope Ry ——
-~ | 2

Figure E-18 New Tag screen for creating a new motion group.

APPENDIX E—CONFIGURING CONTROLLOGIX FOR MOTION

479

Right-click on the new motion group you just created and choose Properties. The
screen shown in Figure E-19 should appear.

* Motion Group Properties - X_Y_Metion_Group

Ao Asigrmert” | amsbuse| Tag |

Uraw gt

Aot

Add > I

X _Aait
Y A

<-Hm|

C=] e |

sl

| __ne |

Figure E-19 Motion Group Properties screen.

Next click on the Attribute tab at the top of the Motion Group Properties screen and
the screen shown in Figure E-20 will appear. Set the Coarse Update Period to 4. This
number represents the number of 0.5 ms used to update the motion. You should have
a minimum of 2 per axis used. In this application you have 2 axes so the Coarse Update
Period should be set to 4 minimum.

e bngewen MR’ e
Roon S Tl 4
LT T

-
‘1 -

At (8w
R e

Y p———

=

-t w]

—
-

. |

-

sy |

Figure E-20 Motion Group Properties screen. This is where the Coarse Update Period is set.

Then select Apply and OK.

480

APPENDIX E—CONFIGURING CONTROLLOGIX FOR MOTION

Figure E-21 shows what the Controller Organizer looks like after the motion group
X_Y_Motion_Group was added.

= 45 Comtrolier X_Y_Axis_Motion_Project
é Contyollier ¥ags
L) Contyollian Paul Handier
L Powesr-Lip Handlier
= 5 Taths
= 8 ManTask
o B Marbvog am
() Undehadiuid Py oy s
= A2 Moiion Giowups
@ X_¥_Motion_Group
= 0 Ungrouprind Axes
D X_Ads
0 ‘_Al“
Ll Feeruds
= 4 Data Types
v L Strngs
o Lgh Predefined
Lt Maodulie-Owfined
= 4 1O Configuration
= § (4] 1756-M0BSE SERCOS_Module
11 2008-050-010-5E X_Axis_Drive
22 2008-0/5D-005-SE ¥_Axis_Drive

Figure E-21 The new motion group named X_Y_Motion_Group under Motion Groups in the
Controller Organizer.

Next you need to move the axis tags you created into the new motion group. Left-
click and drag the axes tags (X_Axis and Y_Axis) you created (under the Ungrouped
Axes tag) and drop them into the motion group folder you created for this applica-
tion (see Figure E-23). In this example the name of the motion group folder is X_Y_
Motion_Group. The Controller Organizer is shown in Figure E-22.

APPENDIX E—CONFIGURING CONTROLLOGIX FOR MOTION 481

L1 Controllier Mioiiomn
L] Taiks
= Motion Groups
= @ X_Y_Motion_Group
@ X_Axis
@ ¥ it
L Ungrowped Axes
L Treruls
&) Data Types
= S 1O Configuration
(2] 1756-0816E Output
E (4] 1756-M00SE SERCOS _intorface
11 2058-D5D-010-5E X_Axis
22 2098-05D-010-5E Y_Axis

Figure E-22 Controller Organizer screen after drives, motion tags, and a motion group folder
X_Y_Motion_Group were added. Note that the axes tags were dragged to the new motion
group folder X_Y_Motion_Group.

CONFIGURING THE AXES OF MIOTION

Next the axes need to be configured. This is done in the tag for each axis. Right-click on
the X_Axis tag under Motion Group and select Axis Properties, and the screen shown in
Figure E-23 will appear.

482 APPENDIX E—CONFIGURING CONTROLLOGIX FOR MOTION

‘¢ Axis Properties - X_Axi m) P

Homing | Hookup | Tune | Oynamics | Gane | Ouput | Lisks | OMset | FaulActos | Tag
M|WM| Units | DeveMotor | Motor Feadback | AuxFoadback | Conwersion

e Configuaation | Servo -
Motion Geoups PX_Y_Moton_Geoup -l _' e Gresug I
Aruanated Modulie

Mordlie PX_Aws_Dwve >

Maodule T you 28050 0105€

Node n -

ox Concel | o0 | He |

Figure E-23 Axis Properties configuration screen.

Click on the Drive/Motor tab and the screen in Figure E-24 will appear. The drive in
this example is a 2098-DSD-010-SE model. The drive model number was entered into
the Amplifier Catalog Number. Next the motor model is entered. Click on the Change
Catalog button and select the correct motor model. The Motor Catalog Number is found
on the motor. The motor model in this example was an N-3412-2-H.

APPENDIX E—CONFIGURING CONTROLLOGIX FOR MOTION 483

‘¢ Axis Properlies - X Axis

Homing | Hookup | Tune | Dynamcs | Gane | Ouput | Limits | Oset | FaubAchons | Tag
Gerwral | Motion Planrer | Units WIWFM‘]MFﬁﬂltm

Aangiltus Catabo Number | 209050 010 58 >
Motor Carallog Number (3. 3412 244 Change Catalog

Dmve Reoluron |2mmo Dewve Countts per Imﬂw -| Calkcrbiane |
W Dawve Enable ingut Checking
™ Dawve Enable bngut Fault

Floal Time A bnbommamon
Ambute 1 [<one> ~
mz I(m) 3

[Concel | Aooy | Heb |

Figure E-24 Drive/Motor selection.

There are several more parameters that need to be configured to prevent damage
to the drive or motor. You will be configuring several important parameters for how the
drives will function. The most important to prevent damage to the axis in this application
is the parameter that sets hard limits for the application. In this application if hard limits
are not set, a crash could occur and do great damage. To set hard limits, click the Limits
tab and check the box next to Hard Travel Limits (see Figure E-25).

484 APPENDIX E—CONFIGURING CONTROLLOGIX FOR MOTION

‘e Axis Properties - X Axis
Goresal | Moton Plarmer | Units | DeveMoror® | Motor Feadback” | AuxFeodback | Comversion
Homing | Hookup | Tune | Dynamics | Gane | Oupue Umits® | Ofset | FaukActons | Tag
= Hand Travel Limits |
Pouibon Esor Tolesance 00 Poatien Units
Pouibon Lock Tolesance am Poution Units
Poak Torgue/Force Limt Ioo % Rated
Contrwous Tosgue/Fosce Lt | 1000 % Rared
oK Corcel | 2oo | me |

Figure E-25 How Hard Travel Limits are set for a drive.

Next choose the Fault Actions tab and select Stop Motion in the Hard Overtravel
checkbox (see Figure E-26). This tells the system to stop motion if an overtravel switch
goes false. Note that the end limit switches on this system are normally closed switches.
This must be done individually for each axis.

APPENDIX E—CONFIGURING CONTROLLOGIX FOR MOTION 485

¢ Axis Properties - X _Axis m]p

Gerweal | Motion Planeer | Units | Deve/Motor® | Foodback” | AusFondback | Comversion

i

Homing | Hookup | Tune | Opnamics | Gans | Ouput | Lets' | OMset Fakactons” | Tag
[oratie = Set Cuntom Skop Ackon._ |

Dove Theemal | Dusatiie Duve -

Motor Themmal | Dusatiie Duve =~

Femdback Nowe | Dusabiie Duve -

Fomdback | Dusabiie Duve -

Pouition Emor | Dusabie Dave -

Hard Overt e | Sa0p Mton -l
o =]

[Cocel | Ao | Heb |

Figure E-26 Setting the Hard Overtravel configuration. In this example you want the drive to
stop the motion if the axis moves too far and hits an end limit switch.

Next homing will be configured. This is configured for each axis in the axis tag.
Choose the Homing tab in the Axis Properties screen (see Figure E-27). You will utilize
the homing method that uses the home sensor (switch) and the index pulse on the encoder
(marker pulse). Choose Switch/Marker for the type of homing, set the Limit Switch type
to Normally Open, and set the homing Direction to Reverse Bi-directional. This will tell
the drive that when a home command is executed it should move in a negative direction
to find the home switch. The home switches in this example system are on the negative
end of each axis. Speed and Return Speed homing velocities must be entered. Homing
is normally done at a low speed. A 5 was entered in each for this example; 5 represents
5 inches per minute in this application.

486 APPENDIX E—CONFIGURING CONTROLLOGIX FOR MOTION

‘¢ Axis Properties

Deechon |Reverse Brdvectonal v |

ox Cocel | agoh | Heb |

Figure E-27 Homing configuration screen.

RESOLUTION OF THE AXES

Figure E-28 shows the Axis Properties screen for the X_Axis. Note that Conversion
Constant 200000 was entered in this example. This number represents Drive Counts/1.0
Position Units. In this example the desired unit of measurement for the system is inches,
s0 200000 Drive Counts is equal to 1 inch of travel.

APPENDIX E—CONFIGURING CONTROLLOGIX FOR MOTION 487

‘¢ Axis Properties - X_Axis o X

Homing' | Hookup | Tume | Dynasics | Gaine | Ougur | Lmity' | Dot | Faudesons® | Tao |
Germeal | MosonPlarmer | Units | DiveMorr® | Motor Feedback” | AuxFeedbach Comversion

Pomhorung Mode Lirvar -

Darve Counts/? 0 Posibon Units
Conwesiion Constant | 2000000 based on 200000 Counts/Motor Rev

[T] cwmest | seew | He |

Figure E-28 Axis Properties screen for X_Axis.

A discrete output module will be required for this application. Outputs from the
output module will be used to enable each drive. Right-click on I/O Configuration and
choose New Module. Add an output module. Figure E-29 shows the Controller Orga-
nizer after the output module was added. Note that you could have added the output
module before you added the SERCOS card and drives.

= 1) Controlier X_Y_Axis_Mation_Progect
= 5 Tashs
- 8 Miain T ik
_'" --‘ w‘
T3 Ut ied Progy e
- £ Moo Groups
= €9 X_Y_Motion_Group
e X_Axin
0 ¥ _Aun
| Ungouged Ases
] Trenuds
1 Data Tygpes
=3 YO Conffigur atice
(2) 175608168 Outgur_Modle
[4] 1756-M08SE SERCOS _Module
11 2098-0S0-010-SE X_Axis_Drive
22 2098-050-0085-SE ¥_Axis_Drive

Figure E-29 Controller Organizer after the output module was added.

488 APPENDIX E—CONFIGURING CONTROLLOGIX FOR MOTION

At this point the configuration is complete. Next you need a simple program to en-
able the drives. In this example the drive enable input for the X_Drive was connected to
output 0 on the output module in slot 2. The enable input for the Y_Drive was connected
to output 1 on the output module in slot 2. Figure E-31 shows a simple ladder diagram
that could be used to enable the drives.

¥ Unabie
Pevaltihe & =L i o

v Bl
Enmibie 1 sLocal 20 Data |

Figure E-30 Logic to enable the two drives. Note that the outputs from the output module
are connected to the drive enable input on each drive.

At this point logic can be written to command motion or the drives can be tested with
motion direct commands.

MOTION DIRECT COMMANDS

Motion direct commands can be used to test your axes before you write the logic. You
must be online in order for any of these commands to work. Right-click the axis icon for
the axis you want to test, then click on Motion Direct Commands. The Motion Direct
Commands window opens; first highlight MSO, the Motion Servo On instruction, and
then hit Execute. The MSO instruction closes the servo loop and puts the drive in con-
trol. From here there are several commands that can be used.

3 Motion Direct Commands - X_Axis: 1 = (DX
| Commarcs Motmn Servo On
B M50 ~ B | - J

B M5F
B MASD

Figure E-31 Motion Direct Commands screen.

APPENDIX E—CONFIGURING CONTROLLOGIX FOR MOTION 489

First the drives must be enabled. Figure E-30 shows a simple ladder diagram that
turns on the drive enable input for each axis. A BOOL tag was used to control the output
to each drive’s enable. This is done to electrically enable and disable each drive.

If the CLX is put in Run mode and the BOOL tags are energized to enable the drives,
motion direct commands can be used to test the axes.

Right-click on one of the drives and choose Motion Direct Commands.

The first command that must be executed is an MSO. This closes the servo loop for
the drive. This must be done, or the drive will not execute any commands.

When an axis is first powered up, it does not know its current position. It needs to be
homed to establish its current position. The motion direct command MAH will use the
parameters that were set up above in the homing properties. Figure E-32 shows the Mo-
tion Direct Commands screen and the MAH command in the list. Note that the X_Axis
was chosen in this example. If the Execute button is chosen, the drive should initiate the
homing routine.

Blulohon[)uullonmumh X_Axis:4 = X

00000%00‘0000 i
$LHHL

gtf
[$5EEEES

Figure E-32 Motion Direct Commands screen.

490

APPENDIX E—CONFIGURING CONTROLLOGIX FOR MOTION

Once the axis is homed, other commands may be tried. A motion axis jog (MA]) in-
struction is used to jog an axis. With a MA] command you have to use a motion axis stop
(MAS) command to stop the axis. When the MA] command is executed in incremental
mode, the drive will continue to move until a MAS command is executed for that axis.
To use an MAJ instruction, you must choose a Direction and enter a Speed. Forward
was chosen for direction and 2 was entered for the MAJ motion direct command in
Figure E-33. Note the X_Axis was chosen for the Axis. When the Execute button is
chosen, the axis will move in a positive direction until a limit is encountered or a MAS
instruction is executed.

Eldoh(m Direct Comimands - X Axis. 4

-

Compmardiy
L3
@
4

0

50040
15aBLEas

eRRRRR
EEEEE

?
1.

71 Mbamn, Fiannin

UL

¥ orveard

UiNiks pée S8
100

Uiniks per S8c2
100

Uinits pén S8c2
Teapa2oudial

Figure E-33 MAJ command.

A MAS instruction is shown in Figure E-34. Note that X_Axis was chosen. If the Ex-

ecute button is chosen, the MAS command will stop motion of the X_Axis.

APPENDIX E—CONFIGURING CONTROLLOGIX FOR MOTION 491

Command:
& w0
Q@ MSF
® MaSD
B MASH
® MDO
@ MOF
B MaFR
= (3 Moton Move
@ MAS
Qe MaH
S M)
LY
@ MAG
@ MCD
B AP .
= T Mok Fawn !l
Mt Geoum Shnifidionam I Empihe I ” I

Figure E-34 MAS command.

There are many other motion direct commands that can be executed. The use of

motion direct commands can help understand motion programming instructions avail-
able in CLX.

This page intentionally left blank

GLOSSARY

A

AC input module A module that converts an AC
input signal to a low-level DC signal logic level
required by the PLC CPU.

AC output module A module that converts the
CPU’s low-voltage DC level to an AC output
signal to control a device.

Accumulated value The present time or count.
Applies to the use of timers and counters.

Accuracy The difference between the actual posi-
tion and the programmed position.

Actuator An output device normally connected to
an output module. An example would be an air
cylinder and valve.

Analog A signal with a smooth range of possible
values. For example, a pressure that varies from
3 to 15 psi is sensed by a pressure sensor that
outputs a signal between 4 and 20 mA.

ANSI American National Standards Institute.

Array A systematic arrangement of numbers or
symbols in rows or rows and columns. In a CLX
array all members must have the same data type.

American Standard Code for Information Inter-
change (ASCII) A system used to represent
letters and characters. Seven-bit ASCII can
represent 128 different combinations. Eight-bit
ASCII (extended ASCII) can represent 256 dif-
ferent combinations.

Asynchronous communications Communications
that use a stream of bits to send data between
devices. There is a start bit, data bits (7 or 8), a
parity bit (odd, even none, mark, or space), and
stop bits (1, 1.5, or 2). Only one character is
transmitted at a time.

Awareness barrier A physical barrier like a rail-
ing, chain, or cable suspended at waist height.
Requires an intentional effort to get beyond it,

making it better than just a yellow line on the
floor.

Backplane Bus in the back of a PLC chassis. It is
a printed circuit board with sockets that accept
various modules. It powers the modules and con-
nects the modules for communication.

Ball screw A mechanical device that is used to
change rotational motion to linear motion. A
threaded shaft provides a spiral raceway for ball
bearings which act as a precision screw. The ball
assembly acts as the nut while the threaded shaft
is the screw.

Barrier A device or object that provides a physical
boundary to a hazard.

Baud rate The speed of serial communications.
The number of bits per second transmitted. For
example, RS-232 is normally used with a baud
rate of 9600. This would be 9600 bits per second.
It takes 10 bits in serial to send an ASCII charac-
ter so a baud rate of 9600 would transmit about
960 characters per second.

Binary Base 2 number system in which 1s and 0Os
are used to represent numbers.

Binary-coded decimal (BCD) number system
A number system in which each decimal number
is represented by four binary bits. For example,
the decimal number 341 would be represented
by 0011 0100 0001 in BCD.

Bit One binary digit, the smallest element of binary
data. A bit can have a value of 0 or 1.

Blanking Bypassing a portion of the sensing field
of a presence-sensing safeguarding device such
as a light curtain.

BOOL A binary digit. A BOOL-type tag can have a
value of 1 or 0. Abbreviation of Boolean.

494 GLOSSARY

*Bootstrap Protocol (BootP) A protocol that as-
signs the same TP address to a device every time
it connects to the network. Its server has a list of
hardware addresses and IP addresses that belong
to each device. When a device (such as a PLC)
connects to the network, it will give the BootP
server its hardware address. The BootP server
will then look up the hardware address in a list
and see which IP address belongs to the PLC. It
will then return the IP address (and other infor-
mation such as the subnet mask) to be used by
the device. Similar to Dynamic Host Configura-
tion Protocol.

*Bounce The erratic make and break of electric con-
tacts as they close or open. Branch: Parallel logic
in a ladder diagram. Used to create OR logic.

Byte 8 bits or 2 nibbles.

C

Cascade Programming technique that is used to
extend the range of counters and timers.

European Committee for Electrotechnical Stan-
dardization (CENELEC) An organization that
develops standards for dimensional and operat-
ing characteristics of control components.

Change of state Property of a device such that it
reports only when the data changes.

*Chassis A frame of an electronic device. Also
called a rack. Available in various sizes. The user
chooses the size chassis that is needed to hold the
number of modules required for the application.
Chassis have slots that locate and power the mod-
ules. The slots connect the module to the back-
plane. The backplane passes power to operate
modules and also enables the modules to com-
municate with the controller and other modules.

CLX ControlLogix.

Color mark sensor Sensor that was designed to
differentiate between different colors.

Complement The inverse of a binary number.

Contact A symbol used to represent inputs. There
are two types: normally open and normally closed.

Contactor A special-purpose relay that is used to
control large electric current.

ControlNet An open industrial network protocol
for industrial automation. It is normally used for
communication between controllers.

Control reliability The capability of the machine
control system, the safeguarding, other control
components, and related interfacing to achieve
a safe state in the event of a failure within their
safety-related functions.

Central Processing Unit (CPU) The microproces-
sor portion of the programmable logic controller
(PLC) that handles the logic.

Carrier Sense Multiple Access/Collision Detection
(CSMA/CD) A network on which each device
monitors the wires for a carrier frequency (car-
rier sense) and can talk if the line is not being
used. If the line is being used, the device must
wait for the line to become clear before it can
gain access to send a message. The weakness in
Ethernet is that two devices may try to transmit
at exactly the same time. This would cause a data
collision, and neither device’s message would get
through. To take care of this problem, Ethernet
uses Collision Detection (CD).

Current sinking A NPN output device that allows
current flow from the load through the output to
ground.

Current sourcing A PNP output device that allows
current flow from the output through the load
and then to ground.

Cyclic Redundancy Check (CRC) A calculated
value, based on the content of a frame of com-
munication. It is inserted in the frame to enable a
check of data accuracy after receiving the frame
across a network.

D

Dark-on sensor A photosensor in which the output
is on when the receiver is not seeing any light.

Data Highway Plus (DH+) A communications net-
work that allows programmable logic controllers
(PLCs) to communicate.

GLOSSARY 495

Debugging The process of finding and fixing prob-
lems (bugs) in a system.

Deterministic A property of a process that a result
can be determined. For example, in communica-
tions systems, devices must gain access to the net-
work to be able to communicate. Token passing
is one access method. In the token-passing access
method, only the device that has control of the to-
ken can talk. The token is passed on from device
to device until one of them wants to talk. The de-
vice then takes control of the token and is free to
talk. With token passing, access times for a device
are predictable. This can be very important in a
manufacturing environment. The access times in
a token-passing access method are called deter-
ministic because actual access times can be calcu-
lated on the basis of the actual bus and nodes.

DeviceNet A communications protocol used in
automation to connect field devices such as
sensors, motors, valves, and so on. It uses Con-
troller Area Network (CAN chip) as its backbone
and defines an application layer to cover a range
of device profiles. Typical applications include
safety devices and I/O devices.

DINT Double integer.

Dynamic Host Configuration Protocol (DHCP)
When a device such as a computer is configured
to use DHCP, a DHCP server should be available
on the network. As soon as the device connects
to the network, it will ask the DHCP server to
automatically assign an IP address, subnet mask,
DNS servers, gateway addresses, and so on. This
IP address is dynamic, so the device could get a
different IP address each time it’s connected to
the network.

Diagnostics Software routines devices often have
that aid in identifying and finding problems in
the device. They identify fault conditions in a sys-
tem typically with a readout or LEDs.

Digital output An output that can have two states:
true (on) or false (off). They are also called dis-
crete outputs.

Discrete The property of having two states: on
or off.

Domain Name Server (DNS, Primary and Second-
ary) The server that resolves host names into
an IP address. When you enter an address such
as Amazon.com into your Web browser, your PC
does not understand where to go. It must ask
the DNS server to look up the IP address of the
name you entered.

Downtime The time a production system is not
available for production or operation.

E

EEPROM Electrically erasable programmable read
only memory.

Emergency stop (E-stop) A manually actuated
control device that can be used to initiate an
emergency stop function. E-stops should be a
red mushroom button with yellow background.

Encoder A transducer that converts rotary motion
or position to a code of electronic pulses.

Energy source Any electric, mechanical, hydraulic,
pneumatic, chemical, thermal, potential, kinetic,
or other source of power or movement.

Examine if closed (XIC) A normally open con-
tact used in ladder logic. This instruction is true
(logic 1) when the hardware input (or internal
relay equivalent) is energized.

Examine if open (XIO) A normally closed con-
tact used in ladder logic. This instruction is true
(logic 1) when the hardware input (or internal
relay equivalent) is not energized.

Examine off A normally closed contact used in lad-
der logic. The contact is true (or closed) if the
real-world input associated with it is off.

Examine on A normally open contact used in lad-
der logic. This type of contact is true (or closed)
if the real-world input associated with it is on.

Expansion chassis A chassis added to a PLC sys-
tem when the application requires more modules
than the main rack can contain. Sometimes used
to permit I/O to be located away from the main
chassis.

496 GLOSSARY

F
False O or off.

Firmware A combination of software and hardware
to download new software to upgrade the system.
A CLX controller and modules can be upgraded
by downloading new firmware.

Force Change the state of I/O by changing the bit
status in the controller. You can force an output
on by changing the bit associated with the real-
world output to a 1. Forcing is normally used to
troubleshoot a system.

Full duplex Communications scheme where data
flows in both directions simultaneously.

Function block One of the languages specified in
IEC 61131-3. Can be used to program CLX.

G

Gateway address The IP address of a server or
hardware router that connects a device to other
networks such as the Internet.

Ground A direct connection between equipment
(chassis) and earth ground.

Guard A barrier that prevents a person from reach-
ing over, under, around, or through it, avoiding
both intentional and unintentional access to haz-
ardous areas.

H

Half-duplex The property of a communication
such that data flows in both directions but in only
one direction at a time.

Hasp A safety device that enables the use of sev-
eral locks to lock out energy.

Hazard A potential source of harm to individuals.

High-Level Data Link Control (HDLC) Standard
protoool of communication orientation in mes-
sage transmission (frames). The Serial Data Link
Control (SDLC) is a subset of the HDLC that
defines the whole protocol in more detail and is
byte oriented.

Hexadecimal Base 16 number system.

Hysteresis A dead band that is used to prevent
false reads in the case of a sensor.

International Electrotechnical Commission
(IEC) An organization that develops and dis-
tributes recommended safety and performance
standards.

IEC 61131-3 An international standard for PLCs.
Actually a collection of standards for PLCs and
their associated peripherals. The standard consists
of eight parts: Part 1: General information, Part 2:
Equipment requirements and tests, Part 3: Pro-
gramming languages, Part 4: User guidelines, Part 5:
Communications, Part 6: Reserved for future use,
Part 7: Fuzzy control programming, and Part 8:
Guidelines for the application and implementation
of programming languages. Part 3 (IEC 61131-3)
is the most important to the PLC programmer. It
specifies the following languages: ladder diagram,
instruction list, function block diagram, structured
text, and sequential function chart.

IEEE Institute of Electrical and Electronic
Engineers.

Incremental The property of an encoder that uses
pulses to establish position and direction.

Integer A whole number.

Interfacing Connection of a PLC to other indus-
trial devices.

Interlocked barrier guard A barrier or section of a
barrier interfaced with the machine control sys-
tem to prevent inadvertent access to the hazard.

1/0 Input/output.

IP rating A rating system established by the IEC
that defines the protection offered by electrical
enclosures.

Isolation A technique used to separate real-world
inputs and outputs from the CPU. Isolation
assures that even if there is a problem with real-
world I/O, the CPU will be protected.

GLOSSARY 497

K

K An abbreviation for the number 1000. In com-
puter language it is equal to 2 to the 10th power
(1024).

Keying A method to ensure that modules are not
put in the wrong slots of a PLC. Done by me-
chanical means in most PLCs, but electronically
in CLX.

L

Ladder diagram A programmable controller lan-
guage that uses contacts and coils to develop the
logic for an application.

Latch An instruction used in ladder diagram pro-
gramming to retain a coil’s state even if the rung
controlling it becomes false.

Leakage current A small amount of current that
flows through load-powered sensors. The small
current is used to operate the sensor. The small
amount of current flow is normally not enough to
be sensed by the PLC input.

Light-emitting diode (LED) A solid-state semicon-
ductor that emits visible light or invisible infrared
light.

Light-on sensor A photosensor in which the out-
put is on when the receiver sees light.

Linear output Analog output.

Line-powered sensor Normally a three-wire
sensor. The line-powered sensor is powered from
the power supply. The third wire is used for the
output.

Load-powered sensor A two-wire sensor. A small
leakage current flows through the sensor even
when the output is off. The leakage current is re-
quired to operate the sensor. The leakage current
is too small to activate a PLC input if the sensor
output is off.

Lockout The placement of a lockout device on
an energy-isolating device, in accordance with
an established procedure, to ensure that the
energy-isolating device and the equipment being

controlled cannot be operated until the lockout
device is removed.

Lockout device A device such as a lock, either key
or combination type, to hold an energy-isolating
device in the safe position and prevent the ener-
gizing of a machine or equipment.

LSB Least significant bit.

M

Master The device that controls the communica-
tion traffic in a network. The master polls every
slave to check if it has something to transmit. In
a master-slave system, only the active master can
place a message on the bus. The slave can reply
only if it receives a logical token that explicitly
enables it to respond.

Master control relay (MCR) A hardwired relay
that can be deenergized by any series-connected
switch. Used to deenergize all devices. If one
emergency switch is hit, it causes the MCR to
drop power to all devices.

Memory map A drawing showing the areas, sizes,
and uses of memory in a computer or PLC.

Mesh network A network in which each device
passes the message to its neighboring device until
it reaches the destination device. If a neighboring
device is damaged, another neighbor is used.

Microsecond (us) Omne-millionth (0.000001) of a

second.

Millisecond (ms) One-thousandth (0.001) of a

second.
MSB Most significant bit.

Muting The automatic temporary bypassing of
safety-related function(s) of the control system or
safeguarding device.

N

National Electrical Manufacturers Association
(NEMA) An organization that develops stan-
dards that define a product, process, or pro-
cedure. The standards consider construction,

498 GLOSSARY

dimensions, tolerances, safety, operating charac-
teristics, electrical rating, and so on.

Nibble 4 binary bits. One half of a byte.

Noise Unwanted electrical interference. It is
caused by motors, high voltages, coils, welding,
and so on. It can interfere with communications
and control.

Nonretentive coil A coil that will turn off on re-
moval of power to the CPU.

Nonretentive timer A timer that loses the accumu-
lated time if its rung goes false.

Nonvolatile memory Memory in a controller that
does not require power to be retained.

NOR A logic gate that results in zero unless both
inputs are zero.

NOT A logic gate that results in the complement
of the input.

NUT Network update time.

(o)
Octal Base 8 number system. Uses digits 0 through 7.

Off-delay timer (TOF) A timer whose output is on
immediately when it is enabled. The output turns
off after it reaches its preset time.

On-delay timer A timer whose output does not
turn on until its accumulated time has reached
the preset time value.

One-shot contact A contact that is only on for one
scan when energized.

Optical isolation A technique used in I/O module
design that protects the CPU from signals from
the outside world.

OR A logic gate that results in one unless both in-
puts are zero.

OTE Output energize coil.
OTL Output latch coil.
OTU Output unlatch coil.

P

PAC Programmable automation controller.

Parity Bit used to help check for data integrity dur-
ing communications.

Peer to peer The type of communication that oc-
curs between similar devices. For example, two
PLCs communicating would be peer to peer.

Proportional, integral, derivative (PID) control A
control algorithm that is used to closely control
temperature, position, velocity, and so on. The
proportional portion corrects for the magnitude
of the error. The integral corrects small errors
over time. The derivative compensates for the
rate of change in the error.

Pitch The distance between two adjoining threads.
PLC Programmable logic controller.

Polled The property of communications of individ-
ual devices that the scanner polls for their status.

Producer/consumer A communication system in
which devices can send and receive data inde-
pendently, communication is optimized, and data
is collected directly from devices without the
need for complicated programming. In a pro-
ducer/consumer system a controller can produce
certain data and other controllers can consume
the data. Used in such networks as DeviceNet,
ControlNet, and EtherNet/IP.

Project The overall application you develop in
CLX. Contains all of an application’s elements
and is broken into tasks, programs, and routines.

Protective device A device, other than a guard,
that reduces a risk, either alone or associated
with a guard but not including personal protec-
tive equipment.

Pulse modulated The property of a device in which
it is turned on and off at a very high frequency.
Used with LEDs. In sensors the light source is
modulated; the receiver only responds to that
frequency. Used to make photosensors immune
to ambient lighting.

GLOSSARY 499

Q

Quadrature The situation where two output chan-
nels are out of phase with each other by 90 de-
grees. Used in encoders to determine direction
of rotation.

R

Rack A PLC chassis. Normally holds the CPU
and PLC modules and is usually attached to the

power supply.

Random access memory (RAM) Volatile memory.
Normally considered user memory.

REAL A real or decimal number.

Residual risk The risk that remains after protec-
tive measures have been taken. Every industrial
machine, regardless of how well safeguarded it
appears to be, has some degree of residual risk.

Resolution A measure of how closely a device can
measure or divide a quantity. For an analog to
digital card, resolution would be the number of
bits of resolution. For example, for a 16-bit card
the resolution would be 65536.

Retentive coil A coil that will remain in its last
state, even if power is removed.

Retentive timer A timer that retains the present
accumulated time even if the input enable signal
is lost. When the input enable is active again, the
timer begins to time again from where it left off.

Retroreflective A photosensor that emits light that
is reflected from a reflector back to the receiver.
When an object passes through the light, it breaks
the light beam.

Risk A combination of the probability and the
degree of the possible injury or damage to health
in a hazardous situation. Used to select appropri-
ate safeguards.

Risk assessment The process by which the in-
tended use of the machine, the tasks and hazards,
and the level of risk are determined.

Read-only memory (ROM) The nonvolatile operat-
ing system memory. Memory is not lost when the
power is turned off.

Routine The entities in which an application’s logic
is created. Each CLX program can have one or
more routines. In most PLCs they are called pro-
grams or subprograms.

RS-232 A serial communications standard that spec-
ifies the purpose of each of 25 pins. It does not
specify connectors or which pins must be used.

RS-422 and RS-423 Standards for two types of
serial communication. RS-422 is the standard for
a balanced serial mode in which the transmit and
receive lines have their own common instead of
sharing one. This allows for higher data trans-
mission rates and longer transmission distances.
RS-423 is for the unbalanced mode, whose speeds
and transmission distances are much greater than
with the RS-232 but less than with the RS-422.

RS-449 Electrical standard for RS-422/RS-423.

RS-485 A derivation of the RS-422 standard. The
standard is now officially known as EIA/TTA-485,
although it is still commonly referred to as
RS-485. RS-485 is for a multidrop protocol, in
which many devices can be connected on the
same network. The standard limits the number
of stations to 32. This allows for up to 32 stations
with transmission and reception capability, or
1 transmitter and up to 31 receiving stations. The
maximum distance for RS-485 is 1200 meters.
The total number of devices and maximum dis-
tance can be extended if repeaters are used.

Rung A horizontal line in a ladder diagram that has
the contacts and coils that form the logic.

S

Safeguarding Protecting workers and equipment
with guards, safeguarding devices, awareness
devices, safeguarding methods, and safe work
procedures.

Safety distance The calculated distance between a
hazard and its associated safeguard.

500 GLOSSARY

Safety function The function of a machine that
provides safety; the malfunction of the machine
would increase the risk of harm.

Scan time The amount of time it takes a program-
mable controller to evaluate logic once. It is
typically in the low-millisecond range. The PLC
continuously scans the logic. The time it takes to
evaluate it once is the scan time.

Scope Who has access to a tag. There are two scopes
for tags in CLX: controller scope and program
scope. A controller scope tag is available to every
program in the project. It is also available to the
outside world, such as SCADA systems. A program
scope tag is only available within the program it is
created in. Programs cannot access or use a differ-
ent program’s tag if it is program scope.

Serial Data Link Control (SDLC) A subset of the
HDLC protocol that is used in a large number
of communications systems like Ethernet, ISDN,
BITBUS, and others. The SDLC protocol de-
fines the structure of the frames and the values of
a number of specific fields in these frames.

Sensitivity The property of a device to discrimi-
nate between levels. Sensitivity for a sensor
relates to the finest difference the sensor can de-
tect. On some sensors the sensitivity adjustment
is used to set the level at which the output should
energize.

Sensor A device used to detect change. The out-
puts of sensors change state when they detect the
correct change. Sensors can be analog or digital.

Sequencer An instruction type that is used to pro-
gram a sequential operation. Similar to a drum
controller.

Sequential function chart (SFC) A PLC lan-
guage that is similar to a decision tree or flow-
chart. It organizes an application into steps for
programming,

Serial Real-Time Communications System (SER-
COS) A digital control bus that is used to con-
nect motion controllers, drives, and I/0 for
motion control applications such as numerically
controlled machines. It is very widely used in
motion control applications.

Serial communication The sending of data one
bit at a time. The data is represented by a coding
system such as ASCIL.

Shield A barrier that prevents unintentional con-
tact with hazardous machine areas.

SINT Single integer.

Slave The devices on a master-slave network that
can transmit information to the master only when
they are polled (called) by the master. There is
usually one master and several slaves.

Spread spectrum technology (SST) The technol-
ogy in which the message is modulated across a
wide bandwidth, over many different frequen-
cies. This ensures that interference on a single
frequency cannot prevent the data from reach-
ing its destination. A special code determines the
actual transmitted bandwidth. Authorized receiv-
ers use the code to extract the message from the
signal. The transmission looks like noise to un-
authorized receivers. This makes SST very noise
immune. Used for wireless communications. De-
veloped by the U.S. military during World War
IT to prevent jamming of radio signals. It also
helped make signals harder to intercept.

Step A programming element used in SFC pro-
gramming to divide an application into logical

blocks (steps).

Stop functions Functions that bring a machine
to a stop. There are three types. Category 0 is
an uncontrolled stop by immediately removing
power to the machine actuators. Category lisa
controlled stop with power to the machine actua-
tors available to achieve the stop then removed
when the stop is achieved. Category 3 is a con-
trolled stop with power left available to the ma-
chine actuators.

Structures Entities that enable a programmer to
create a structure-type tag, available in CLX, that
can hold multiple data types. An array can only
hold one data type.

Structured text (ST) A PLC language that is very
similar to regular computer programming lan-
guage such as C or Pascal.

GLOSSARY 501

T

Tagout The placement of a tag on an energy-
isolating device, in accordance with an established
procedure, to indicate that the energy-isolating
device and the equipment being controlled may
not be operated until the tag is removed.

Tagout device A very visible warning device, such
as a tag and a means of attachment, that can be
securely fastened to an energy-isolating device
in accordance with an established procedure to
indicate that the energy-isolating device and the
equipment being controlled may not be operated
until the tagout device is removed.

Task A CLX project can have one or more tasks.
Tasks can be used to divide an application (proj-
ect) into logical parts. Tasks have a couple of im-
portant functions. The task is used to schedule
the execution of programs in the task. A CLX
project can have up to 32 tasks. A task’s execution
can be configured to be executed continuously,
periodically, or on the basis of an event.

Thermocouple A temperature-sensing device. It
changes a temperature to a current. The current
can then be measured and converted to a num-
ber by a PLC input module.

Thumbwheel A device used by an operator to en-
ter a number between 0 and 9. Thumbwheels
can be combined to enter numbers of more than
one digit. Thumbwheels typically output BCD
numbers.

Token passing A communications access method in
which only the device that has the token can talk.
It is considered a deterministic access method.

Tolerable risk What a company considers accept-
able for a given task-hazard combination.

Transition An element used in SFC program-
ming that determines when the next step can be
executed.

Transitional contact A contact that changes state
for one scan when energized.

True A 1 or high state.

Two-hand control device An actuating control
that requires the concurrent use of the operator’s
hands to initiate machine motion during the haz-
ardous portion of the machine cycle.

U

Underwriters Laboratory (UL) An organization
that operates laboratories to investigate systems
with respect to safety.

User Defined tag A tag in CLX that is defined by
a user. A User Defined tag type can contain mul-
tiple tag members that can be of different types.

\'

Validation The confirmation by examination and
testing that the particular requirements for a spe-
cific intended use are met.

Verification The process or act of confirming that
a device or function conforms or performs to its

design.

Volatile memory Memory that is lost when power
is lost.

w

Watchdog timer Tasks have a watchdog timer.
A major fault occurs if the scan time exceeds
the watchdog value. It can be set under task
properties.

Word The length of data in bits that a microproces-
sor can handle. For example, a word for a 32-bit
computer would be 32 bits long, or two bytes. A
64-bit computer would have a 64-bit word.

This page intentionally left blank

2-dimensional arrays,
3-dimensional arrays

7-bit ASCII, DO

8-bit extended ASCII,
556x processors,

1756-OB16E output module, %
5555 ControlLogix @‘ocessnrs,

1-dimensional arrays, %

60204-1 standard,

A

ABS (absolute) instruction,
ABS (Absolute value) function,
absolute encoders, [1254124
absolute move, 334
absolute position, P19
AC devices, E

AC output module and wiring, @

AC outputs and surge suppression,
ACC (preset count),

ACC value, 4 [

acceleration move profile 339
acceleration parameter, B314333
acceptable risk,

accumulating timers, E

ACOS (Arc cosine) function,

ACS instructions,

Action Properties screen

action ta%structure,

actions,
assignment statement (;) and,
Boolean,
calling subroutine,
comments,

non-Boolean,
order of execution,
qualifiers,
setting bit member,
Add (+) operator,
ADD (add) instruction, [L59
ADD function block,
Add-On instructions, 4]
benefits, PS(
creation, pST
data types, PS3
deﬁni?llg primary functionality,
description, P83
developing, PS(]
developing logic DS
documentation, DS
help,
Help file instructions,
local tags, P81
logic routine, P83
harameters, PS(]
Ecan mode routines,
storing,
Add-On Instructions command, E
adjustable guards,

INDEX

Agere, P99
Aironet, P99
alarm area, P79

AlarmHigh member,
alarms
analog modules,
PID (Proportional, Integral, Derivative)
instructions
alias-type tags,
American Sdciety of Safety Engineers,
analog data and integer mode, @
analog I/0 module, ﬁ
analog input modules, 119
inputs,
module properties screen,
troubleshooting,
analog modules
alarms, 103
current-sensin
data format,
differential inputs 107
field calibration, 103
freezing state of channels,
high-speed-mode differential wiring
method,
resolutions,
RPI (Requested Packet Interval) param-
eter,
RTS (Real Time Sample) parameter, E
scaling, 10]]
sensor offset, 104
single-ended inputs, [103
timing parameters, DY
updating controllers, [LO3
analog output, [L7¢
ramping signal, 1]]
analog output devices, controlling, E
analog output modules,
RPI value, 109
troubleshooting, }t04
wiring,
analog resolution,
analog sensors output, 137
analog voltage input modules,
AND condition, p
AND instruction,
AND logic block.
AND operation, [L6:
ANSI (American National Standards
Institute)
ANSI B11.TR3-2000,
control reliability in Standard
B11.192003 (3.14),
ANSI B11-2008 safety standard,
ANSI B11.TR3-2000 standard
acceptable risk,
frequency of exposure to hazur
B44

probability of injury occurring,

responsibility on machine manufacturers
and users,
risk estimation example,
safeguarding,
severity,
tolerable risk,
ANSI PMMI B1555.1-2006,
ANSI/RIA-1999. “Industrial Robots and
Robot Systems” standard, p43
ANSI/RIA 15.06-1999 standard, P44
risk classification,
ANSI/RIA R16.06-1999 (4.5.4) standard,
applications and modules, E
arithmetic conversion operations,
arithmetic functions, P04
arithmetic operators
order of precedence,
ST (structured text) programs, D0
arrays
creation, E B 1]
dimensions, P94B(]
elements,
filling range of memory locations in, m
holding values of multiple tags,
indexing,
taking one order out of, 193
User-Defined structure tags, B3
ASCII,
ASCII/RTU mode, P97
ASIN (Arc sine) function, O]
ASN instructions,
assignment statements (;), D0
Assume Data Available Marker, P64
asynchronous serial communications,
p
ATAN (Arc Tangent) function,
ATN instructions,
automated systems
clearance distances around devices,
disconnects, B9
documentation, P84
enclosures, BSS439|

fusing,
installation, 393
math instructions, [L5]]
MCR (master control relay).
metal chips or components, B9]
reliability,
temperatures,
transformers, B9
wiring,
automating processes, E
automation,
hardwired relays, f]
safety,
AVE (average) instruction
averaging values, 153

504 INDEX

axes
calibrating position to known reference,
]

closing servoloop,

direction, P3(}

homed, 24

interpolation, B2(}

jogging, 26] p29 155

known position (home position) for,

moving and controlling, B2

moving in absolute or incremental mode,

multidimensional linear coordinated
move, B35

resolution

testing,
axis of motion

single-axis of motion, 319

B

backbone cable,

background tasks,

backplane, B

backplane connector, 1 4

backplane CPU i

ball screws, B174B1

BAND (Boolean AND) function block,

base-type tags,

BAT, i

battery backup,

BCD value, converting integer to and
from, P79

bifurcated cables, JL1§

bipolar modules, P

bit file, comparing values,

bis

black wiring, 394

blanking, P76

bleeder resistor, @

blue wire,

Boolean actions, D39

Boolean (BOOL)-type tag,

Boolean transitions,

BOR (Boolean OR) function block,
branches,

branching outputs,

BRK (break) instruction, [[93

BSL (bit shift left) instruction, 199
BSR (bit shift right) instruction, 199

C

cables,

calibration of analog modules,

calorimetric principle flow sensors,
134

CAN chip, B0]

capacitive field sensors, [[26

Cartesian coordinate system,

multidimensional linear coordinated

move for axes, P35

cascade control, [L83

CASE OF statement P13
CCW limit switch, B1§

certified safety controller, @
Change History entry screen, P83
channels and encoders, [124
chassis,
CST (Coordinated System Time), E
grounding,
circular interpolation, P21
circular path, P214323
Cisco,
clockwise motion,
CLX DC input modules, wiring,
CMOS RAM, power for, fi
CMP&(I)HW are) instruction,
coils, ﬁ s
color mark sensors,
colors, differentiating between, [123
combination modules
comments,
communications
control-level, 1}
enterprise-level, 319
serial, Pod
wireless, R99430(]
CompactFlash card, E

comparin
bits, @ 5
discrete inputs, P69
large blocki of data,
values,
Compatible keying,
computers, ﬁ
conditions
locking in, E
true and actions, P19
configuration tags, B9
connectors)
FBD (function block diagram) programs,
P64
names, P64
constant as masks,
constraints, moving to another location,
17
constructs, P09
CASE OF statement, D13
FOR DO statements, R1]] ‘
ELSEIF (Else If) statements, |
REPEAT UNTIL statements
WHILE DO statements,

consumed-type tags, B3

contacts, Eéi’@
conditions on rungs, E
multiple,

Contiguous memao:.

continuous tasks, ROJR1] R3]}

continuously running timers, E
control devices, battery backup,
control instructions

BRK (break) instruction, |93

EVENT instructions, 197

GSV (get system values) instruction, @

FOR (loop) instruction,

MCR (master control reset) instruction,

RET (return) instruction,

SSV (set system values) instruction, @
control interlocking,
control-level communications
ControlNet, B1()
SERCOS (Serial Real-Time Communi-
cations System),
control-level networks and ControlNet, @
control reliability, BS14383
control transformers,
Controller Organizer, P74
Controller Organizer screen,
Controller Prdperties ST dialog box,
controller scope tags, P
controllers)
See also CPUs (central processing units)
Ethernet capability,
getting and setting status data,
Listen-Only modes,
overhead operations output processing)
for I/O modules,
owning I/O modules,
owning output module,
sharing tag information with multiple, @
ControlLogix (CL or CLX), D
architecture,
capability as communications gateway,
circular interpolation, 2]
communications modules,
controlling robot,
CPUs (central processing units), [
motion control,
multiple tﬁq of control and communi-

cations,

programming languages, E

projects, @
ControlLogix controller.
ControlLogix CPU, E
ControlLogix Part_Timer tag members, @
ControlLogix PLC, E
ControlLogix projects and ST programs,
ControlLogix technology,
ControlNet,

bus, star, or tree topologies,

compatibility, B0

deterministic, BO7] B1d]

dual-media option, B0Y

performing multiple functions

producer/consumer method,

RG6-U cable,

token-ring system, 31(]
ControlNet network

devices,

distance,

guardband period,

logically arranging devices

maintenance message,

maximum speed, %

moderator frame,

NUT (network update time),

peer to peer or master-slave communica-
ton,

scheduled time,

unscheduled time,

INDEX 505

convergent photosensors,
Coordinate System Properties General
entry screen,
Coordinate System Properties Units entry
screen, @

Coordinate System tag name,
coordinated motion, @
coordinated motion instructions
COP (copy) instruction, 179
copy conversion operations, 157
COS (change of state) instruction, BY] -
COS (Cosine) function, P04
count-up enable input, P73
counterclockwise motion,
counters,

function blocks, P74
CPT (compute) instruction, 157
CPUs (central processing units)

adding memory,

battery backup

ControlLogix PLC,

Ethernet,

explicit messaging,
grounding

I/0 messaging,

memory cards,

MiCroprocessor,

modular PLCs,

power requirements,

protecting from real world, | -
RS232 serial pﬂrogmmmmg port, |1

status LEDs
troubleshooting,
crash switch,
CRC (cyclical redundancy check),
cross talk,
CSMA/CD (Carrier Sense Multile Ac-
cess/Collision Detection), 311}
CST (Coordinated System Tlme), B
CTD (count-down) Countels
CTU (count-up) counters, [[74[9
CTUD (count up/down) counters, .
CTUD instruction
current output
current-sensing analog odules
CV (control variable E
CW limit switch, B14
cyclic trdnsmlss]on

D

D (derivative) gain,
daisy chaining,
dark-on outputs
dark-operate output,
data
comparing large blocks, 175
copyli)ng b%t bygbit,

floating point, @
integer,
masks,

data format for analog modules, I@
data types,)
Add- On instructions, -
tags,

DC dewces and discrete output modules, E

DC output module wiring, E
DC outputs
noise suppression 399
transistor output, EE
DDT (diagnostic detect) instruction,
175
dead-band parameter,
deceleration move profile, B
deceleration parameter, 333
decimal (floating-point) values,
DEG instruction P- ﬁ
DEG (radians to degrees) function,
deglﬁ ﬁnvemnﬂ radians to and from
L66] R7 1
device-level networks,
DeviceNet, P9]]
DeviceNet, P9]]
broadcast-based communications proto-
col,
CAN chip,
change of state, 30
communications flow, B054309
communications module, P03
conlponents,
cyclic transmission,
devices, 014303
drop lines. B
flat cable,
Flex I/O modules,
flexibility in wiring topology,
node, @))

open network standard,
B0

polled communications,
scanlist, P03

scanner, 0]

strobed communications,
thick wire,
troubleshooting

trunk lines, 3 m 304
wiring,
devices
clearance distances around,
collision,

ControlNet network
DeviceNet, 302

gaining access to network,
polling for status,

reporting only when data changes,
B02-{307
strobing for status, B0J

transmitting, B1 1]
turning off at end of step, P34
two states,
DF1 protocol,
DH+ (Data Highway Plus), P9SP9g
diagnostic digital I/O modules LED indica-
tors. [5]
diagnostic modules and tags,
dldg_,nostlc output modules,
dlfierentlal encoders immunity to noise,
differe,ntial inputs and analog modules,
|
differential wiring, L0610
incremental encoders, 123

digital /0 module, [{
digital input modules, B4JP1]

accessing CST, E

input,

LED status information, B5-J81
digital output modules, fusing, P7
digital sensors, 113
digital signals, [L4
digital values, converting analog output

signals to, 109
Disable kevmg T
disconnects and automated systems, B93
discrete devices states,
discrete input modules,
troubleshooting,
discrete inputs, comparing,
discrete modules. See digital modules
discrete output modules, p

troubleshooting, {03
discrete sensors, [L14
disturbances, dealing with known,
DIV (divide) instruction,

DIV function block, P67

Divide (/) operator, m

division, remalnder of, [L55} -

DN bit, /2
oulmentdtion

Add-On instructions @

automated systems, E

SFC (sequential function chart)

programs,
double-integer (DINT) -type tag, E
down counters,

drive application, sequence for starting,
B24

drives
controlling position and velocity,
enabling,
enabling input,
homed,

motion direct commands,
drop lines, 304
drum controllers, 154
dual-channel gate switches, B74
dual-channel safety switch wiring diagram,

E

E-stop button, 363

E-stop condition, B83

E-stop input circuit safety relays, 379

E-stop pushbuttons, B67436

E»stog Ewitch, 393

Edit tag command,

Edit Tags command, B(}

EDM (external device monitoring)
contacts,

efector dualis sensors,

EIA/TIA-[85] P93

electrical noise, 39

electromechanical relays,

electronic fuses, resetting, P7

electronic keying,

electronic sensors,

506 INDEX

electronically fused output module and
LED troubleshooting panel,

elements,

ELSEIF (Else If) statements D1]

emergency stop switches, 393

EMI (electromagnetic interference), B93

employee notification of lockout and tagout
devices,

EN 953. “Safety of Machinery Guards,
General Requirements for the Design
and Construction of Fixed and)
Movable Guards” standard,

EN 60 204-1 standard,

EN 60947-5-1 standard, 63

EN 954-1 standard

categories to describe level of safety
requirements, B33
safety system classifications 353

EN 954-1 standards, B51-352) 64

EN 1088 standard, p63

EN (enable) bit,

EN ISO 13849-1 standard 354135

EN ISO 12100 standard, 49| 55

enclosure fans,

enclosures

automated systems, BSS{B9]

IP (Ingress Protection) rating, @

NEMAS standard,

power supply to convert AC to DC,
encoders

absolute, 1254124

channels, [124

incremental, [122

index pulies,

LEDs. 23

position teedback,

quadrature, [124

resolution, 1239

velocity feedback,
endpoint,

energy-isolating devices, 14

energy lockout/tagout standard, 19

enterprise-level communications, B10J313

EOT (End of Transition), D4

EQU (equal) math instruction

EQU (equal to) instruction, [L5§

Equal (=) operator,

equipment

returning to service, 2
risk assessments, 344
equipment protection earth ground, @
ESEL (enhanced select) function block,
P74
ESPE (electrosensitive protective equip-
ment) standards, 6]
Ethernet, 319
Ethernet/IP
connecting remote analog output
modules,
connecting remote input modules,
Po-J10(]
Ethernet module, E
Ethernet network
devices,
underloading,

Ethernet TCP/IP,
European safety standards
EN ISO 12100, 349
1SO 14121-1:2007 standard,
event-based tasks, E
EVENT instructions
event-type tasks,
Exact Match keying, E
execution types cllarz1cte1'istjcs, E
explicit messaging, B0Oq
Exponent (**) operator, R0
extruders, 1O(]
F
fail-safe stop switch, E
Faraday’s law of electromagnetic
induction,
fault status LED,
FBC (file bit comparison) instruction,
175
FBD (function block diagram)
programming
ADD function block, D6 1]
extensive information/data flow,
ladder diagram,
FBD (function block diagram) programs
connectors, R654P6
elements of function blocks, P61Jp69
feedback,
order of execution, P63
starting, P74
wire type, P63
FCC (Federal Communications Commis-
sion),
feedback and FBD (function block

diagram) programs,
feedforward,
FFL (FIFO load) instruction.
FFL (file fill) instruction,
FFU (FIFO unload) instruction, 19
fiber-optic cables types
fiber-optic sensors,vb
fiber-optic thru-beam sensors,
field buses,
field calibration, 10
field devices, BO]l
field sensors
capacitive, [124
hysteresis,
inductive, [129
mounting, [13(]
preventing object from teasing,
sensing range
shielding,
file instructions

COP (copy) instruction, 179
DDT (diagnostic detect) instruction,
175

FBC (file bit comparison) instruction,
175
FFL (file fill) instruction, [L74
MOV (move) instruction, 17
MVM (masked move) instruction,
file shifts,
fixed blanking,

fixed guards,
floating blanking,
floating-point data,
floating-point mode, JL1(
floating-point value, P79
flow control instructions, @
flow sensors
calorimetric principle flow sensors,
magnetic inductive flow meters, [L3
ultr%isonic flow sensors,
FLT LED,
flush sensors,
FOR DO statements, P11}
FOR (loop) instruction, 197
FORCE LED, []

forward kinematics, 4]

FRD instruction 7179

full duplex, POq

Function Block command

function block diagram,

function block instruction,

function blocks
Assume Data Available Marker,
counters,
data flow between, P63
elements, P614P6J
feedback, 63§63
ICONs (input connectors), P63
IREF (input reference), D6
loops,
mathematical,
mathematical conversion, D79
multiple connections between, P64
OCONs (output connectors
one-scan delay between, P64
order of execution, D6
OREF (%ut reference),

outputs,

program/operator control P79
programming routines D74
providing input data, P63

SEL (select) function block,
setting parameters
statistical, P69
switching between program and operator
control, |
tag members, @
tags, R6(}
timers, D73
transferring data between output and
input pins, m
trigonometric, P69
wire type, P69
wiring, P63
functional ground
fuse status LED,
fusing automated systems, @

I

El

G

gate switches, B69JBT]]

dual- or single-channel,
gates, OO 7]
gateways, B0OS

generic CL I/O module, B

INDEX 507
generic output module, E IEC 61131-3 international standard, E control,
GEQ (greater than or equal to) IEC 61131-3 languages, displaying information about, I@
instruction, [L59 IEC 61496 international standard, file, 175
GM (General Motors Corporation), E IEC 62061 standard, @ jump, [193
Greater than (>) operator, IEC/EN 62061 standard, languages used in,
Greater than or equal (>=) operator, TEC (International Electrotechnical load, 197
green wire, 394 Commission), logical,

ground, B9
ground loops, B99
rounding, 397
§roup loc%(out/tagout,
GRT (greater than) instruction,
GSV (get system values) instruction,
guard-limit switch,
GuardPLC,
guards
adjustable,
ergonomic considerations, @

fixed,

interlocked, P63
self-adjusting 36

standards,

H

half duplex, POd

handshaking, mE

hardware relays wiring,

hardwired relays, E

Harris Semiconductor, @

hazards and risk estimation analysis,

Help tab screen

High alarm,

high-density I/O modules, E

high-density modules, P

High-High alarm, @

high-speed-mode differential wiring
method,

high-voltage spikes, %

higher-priority tasks,

HMI (human-machine interface)
monitors,

home command, p24

home switch 319

homing, 31

hot tap operations, }13
hysteresis, Bx
I

I (integral) gain,
I/O addressing,
/O LED, i

I/O messaging, BO;
1/0O module tags, BT
1/0 modules %

high-density,
inserting and removing from chassis, E
mechanically keying,
1/0 status LEDs, E
1/0 table, updating, E
ICOﬁ (input connectors),
P
IEC 61508, “Functional Safety of Elec-
trical/Electronic/Programmable
Electronic Safety-Related Systems”
standard,

IEEE 802.3 standard, p1(
IEEE 802.11 standard, P99
IF statements, D1 (]
immediate outputs, pg

In signal,

incremental encoders 124
incremental moves, P33-J334
incremental position, B2(]

index pulses,
inductive devices,
inductive field sensors,
inductive RFID technology;,
inductive sensors,
industrial buses, B0}
industrial controllers, P91
industrial devices, P9
Industrial Ethernet, BO7]
industrial networks categories,
information networks, @
injuries,
input modules
analog,
calibration, L0
converting electric signal to binary
equivalent,
diagnostics
disf?rete, E
LEDs for monitoring, E
remote, E
replacing, |L3

rolling time stamp, BY
sensor connected to, [L]
sinking or sourcing, DI

states for LED status indicator, @
tags,

time-stamping inputs, E
wiring,

input monitorin; e
input signal, D7 1]
input tags, B9

input value, converting to floating-point
value,
inputs
analog input modules, 179

continuously monitoring, p(
counters, P74
digital modules, B4483

highest, lowest, median, or average,
LEDs for monitoring, E
pLCs [[
program or operator control,
selecting, @)
time-stamping,
troubleshooting,
inspection photosensors,
instruction list,
instructions

Add-On,

(=

math,
math conversion, [L67
MSG (Message), |L73

PID (Proportional, Integral, Derivative),
153
relational, 16

retentive,

trigonometric 164

integer data,

integer (INT)-type tag, E
integer mode. JI1
integers, P79

interlocked guardls, 3631364

interpolation, B2
circular, B39 4]

Intersil, P9Y

inverse kinematics,

10T (immediate output) instruction, @

IP 54 enclosure, @P

TP (Ingress Protection) rating, PSS

IREF (input reference), ﬁ D62 P63

ISO 14121-1:2007 standard, B4

1SO EN138490-1 and -2 standards,

1SO EN 13849 standard.
isolation transformers, B93

J
JMP (jump) instruction,
jogging

acceleration or deceleration parameter,
B33
axes, P29-B:
direction, B3(]
merging, B3
speed,
speed units, B3]
JSR (jump-to-subroutine) instructions,

ST programs, P03
jump instructions, [L93
K

key switch, E
keying modules, E

L

ladder diagrams, [L7]

ladder logic, P] ﬂ 199
coils, @ 5] 1S
contacts, 15
EN (enable) bit, [/
instructions,
ladder diagrams,
normally closed contacts
normally open contacts, 1]

outputs, @

[9F0] B84

508 INDEX

power rails, [L{
PRE value E
problems, {08
real-world switches, 1]
RSLogix 5000 toolbar, }
SQO (Sequencer Output) instruction, @
start/stop circuits, p44p3
timer status bits, 73
laser distance sensors, |14
laser scanners 37
laser sensors, 47
latches,
latching instructions,
LBL (label) instructions E
LED status indicator,
LEDs
encoders, [123
laser sensors, [12(]
optical sensors, [L13
LES (less than) instruction. @
Less than (<) operator, @
Less than or equal (<=) operator, P0g
LFL (LIFO load) shift instructions, [192
LFU (LIFO unload) shift instructions, [L9J
light curtain, B71
blanking, P74
muting, B7637:
safety relay, B77
light-on outputs, |L1
light-operate output, [L19
LIM function block, P74
LIM (limit) function block instruction,
LIM (limit) instruction,
limit switches
line filters,
line-powered sensors
linear interpolation,
linear output sensors
Listen-Only modes, B4
LN (Natural log) function, P0d
load instructions, .
load-powered sensors,
lockout,
lockout devices, 414
removing, m
requirements, {16
testing machines equipment or
components,
lockout/tagout checklist example,
lockout/tagout standard
defining energy source, |19
energy-isolating devices, J£13
group lockout/tagout, 19
hot tap operations, {19
lockout,
normal production operations,
outside maintenance or servicing
personnel,
personnel or shift changes, [£19
procedures for application, 17
retraining, {13

servicin& or maintenance, 1]

7

tagout,
training,
LOG (Log base 1% function,

logic, evaluating,

Logic menu, B(
logic routine, P83

Logical AND (&, AND) operator, P07
logical conversion operations, [L56-J157
logical instructions
AND instruction, |
NOT instruction, 163164
OR instruction, [164
logical operators, mE
Logix5000 controller,
Logix family of controllers, E
looping routines, 195
loops
function blocks,
number of times executed,
Low alarm,
Low-Low alarm, [L04
lower-priority tasks, [t
LRC (longitudinal redundancy check)
calculation,

Lucent Technologies,

M
machine limits, B5(]
machine safety, 44
machines
circular interpolation,
linear interpolation, B2(]
returning to service, 19(]
MAFR (Motion Axis Fault Reset)
command,
magnetic inductive flow meters,
MAH (Motion Axis Home) instruction,
o
MAH motion direct command,
main device,
main power disconnect, 93
main-sub mode, P99
MainProgram command,
MAJ (Motion Axis Jog) instruction,
MAM (Motion Axis Move) instruction,
55
MA%/lotion Axis Stop) instruction,
B26] 29

MAJ instruction and,

MASD (Motion Axis Shutdown) command,

B2
masks,
MASR (Motion Axis Shutdown Reset)
command,

master devices addresses, @

master-slave mode,

math conversion instructions,

math instructions, [L5]]
ADD (add) instruction, |53
AVE (average) instruction, 155
CPT (compute) instruction, L5657
degrees-to-radians conversion,
DIV (divide) instruction,
MOD (modulo) instruction, |
MUL (multiply) instruction
NEG (negate) instruction, [L5|
SQR (square root) instruction, [154
SUB (subtract) instruction, L53

math operations

equal order,

overriding precedence,
math statements and precedence,
mathematical conversion function blocks,
mathematical function blocks

ABS (absolute instruction),

ADD function block,

BAND (Boolean AND) function block,

BOR (Boolean OR) function block, @
DIV function block, P67
MOD instruction, P64
MUL function block, P67
NEG instruction, 69
SUB function block, P67
MA\ (moving average) instruction,
7
MAX instruction,

MAXC (maximum capture) instruction,
P 7]

maximum ramp,
MCCM (Motion Coordinated Circular
Move) instruction, m
MCLM (Motion-Coordinated Linear
Motion) instruction,
MCR (master control relay) instruction,
92|
MCR (master control reset) instruction, @
MCR zone, [[94
MDF (Motion Direct Drive Off) instruc-
tion,
MDO (Motion Direct Drive On) instruc-
tion,
mechanical devices, 114
mechanical disconnect
mechanical sensors, 114
mechanical switches, 1 14
members
memory, E
moving to another location,
running programs in, E
setting bit, @
user-friendly name for location, E
memory cards, [L(
merge disabled, B33
merge parameter, B33
merge speed,
mesh wireless networks,
metalworking machine tools and ANSI B11
safety standards,
MiCroprocessor,
MIN instruction,
MINC (minimum capture) instruction,
minimum capture,
MOD (modulo) instruction,
Modbus, P96]p9
Modbus Plus, P96 @
Modbus/TCP,
modular PLCs
battery backup, PJId
chassis,

CPUs (centralﬁcessing unit), EE

memory cards
power supply,
module status LED, E

INDEX 509

modules, m R
analog input, 119
analog output, [LOSJ109
analog resolution, [LO]]
applications,
bipolar,
characteristics and operation, @
combination,

Compatible keying, E
configuring, B4
digital, B44P7

Disable keying,

discrete output,
electronic keying,

Exact Match keying, E
faults,
floating-point mode,
integer mode,
keying,

LED status information, B5] m

Locking tab,
modifying input or output, [00J[01
output resolution,
power requirements,
replacing,
rolling time stamp,
RTBs (RemO\ rable Terminal Blocks), E
scaling, |l
sinking versus sourcing,
tags automatically created for, B7-3§
unipolar,
modulo instruction, -
Modulo (MOD) operator, P0J
motion, programming logic for,
motion commands,
motion control
ControlLogix,
ControlLogix controller, 316
A
X axis, B13
Y axis, B1°
motion control applications and SERCOS
(Serial Real-Time Communications
System),
Motion Direct commands,

Motion Direct Commands window,

Motion Direct-Motion Move commands,

motion function block tags,

motion instruction, B29

motion tag members, ﬂ

motion-type tag,

MOV (move) instruction,

move profiles, 332

moving average, P6 D7 (]

moving standard deviation processes, P64

MSF (Motion Servo Off) command, P27

MSG (Message) instructions,

MSO (motion servo enable) instruction,

MSTD instruction, P64

MUL function block, P67

MUL (multiply) instruction, 154

multiaxis motion synchronized motion
control,

multidimensional arrays and AVE (average)
instruction,

multidimensional linear coordinated move,
multidrop protocol
multiple contacts, p0{pJ
Multiply (*) operator, P03

multipoint to peer wireless networks,
muting, B
MUX (multlplex) instruction, -

MVM (masked move) instruction,

N
National Fire Protection Associates, 94
NEG (negate) instruction, @
negative output,
NEMA (thiond] E]ectriLaI Manufacturers
Association)

NEQ (not equal to) 1nstruction,
networks

device-level,

devices gaining access,

reducinlr unnecessary traffic,

wiring, B0}
neutral, 97
New Add-On Instruction command,
New Data Type command,
NFPA Electrical Standard for Indus-
trial Machinery standard,

NFPA [/ National Electrical Code,

no-load detection,

nonretentive timers,
nonshielded sensors,

normally closed contacts, |
normally closed switches,
normally open contacts, |
normally open switches, f6-J#7
Not equal (<>) operator, ROM
NOT instruction, 164
NOT (Logical complement) operator,

NPN (Sinking Type) sensors, [49

numbers

adding, P64

comparing bits, [L64
conversion operations, 157

dividing,
multip]w’ng_,, 4 @
subtracting, _
NUT (network update time), B9] B0g
(o]
object inspection,
object recognition,
objects, sensing with light,
OCONSs (output connectors),
off-delay timers, [F54[§
on-delay timers, |7
ONF (one-shot-falling) instructions,g

ONR (one-shot-rising) instructions,
ONS (one-shot) instructions, E

Open DeviceNet Vendor Association Inc.,
B0]
OperOperReq input, P77
OperProgReq input, P77
optical sensors
See also photosensors
fiber-optic sensors,
LEDs,
reflective sensors,
retro-reflective sensors m
thru-beam sensors,
opto-isolation,
opto-isolator phototransistor, B4
optoelectronic safety devices
blanking,
input monitorin

laser scanners, B79-438(
i i 3

muting,
OR conditions, p24p3
OR instruction, |L64
OR (Logical OR) operdtor
OREF (output reference), -
OSHA (Occupational and Sdfe Health

Administration) guidelines,t@

OTE (output energize) instruction
OTU (output unlatch) instruction
OUT (output match instruction,
output bmsm
output (,011
output devices, P34pP4
output instructions, p5-Jp4
output modules

analog,

backplane connector,

calibration,

current limit sEciﬁcations, E

digital signals,
fusing m
limiting to single owner, B3-J84

no-load detection,
on- or off-type signals, E
relay outputs
resolutions,
rolling time stamp, Bg
RTB (Removable Terminal Block) E
sinking versus sourcing, P
solid-state outputs,
status LEDs @
wiring,
output resolution,
output tags. BY
outputs, #8J9
analog output

branching

counters, ﬂ
energized, P
function blocks,
immediate

inputs,

logic examples,
multiple conditions to control,
negative, P3
nesting branches, pg

off and on, p6] FS4p0] .

510 INDEX

positive, E
scheduling, @
troubleshooting,
outside maintenance or servicing ersonnel
and lockout/tagout standard, @

P
P (proportional) gain, 177
PACs (Programmable Automation
Controllers),
parity and asynchronous serial communica-
tions, P93
passive ID (identification) tag,
peer-to-peer communication, DOY
peer to peer wireless networks, B0(
perimeter guarding, 379
periodic tasks, ROJP1{ P3| @
photodetector, JL13
photoemitter, [L13
photoreceiver, [L13
photosensors
See also optical Sensors
convergent, |l
dark-on outputs, |
immune to ambient h&ht -
inspection,
laser sensors, [[2(]
light-on outputs, JL1§
photodetector. JL13
photoemitter, [L13
photoreceiver, |i
polarizing, [19]]14
special, [L19-123
PID (Proportional, Integral, Derivative)
instructions
alarms,
cascading loops,
configuration parameters 179
CV (control variable), [[74
D (derivative) gain, [L7]
dead-band parameter, [L8]
derivative-smoothing filter,
executing, [L8(}
feedforward,

input and output, JL7
main parameters
output biasing,
output limiting, |L8]]

proportlonaliun

periodic tasks
PV (process variable), [L74
scaling parameters, 1S(]
setpomt
summing junction, m
update time, [LS8(
zero crossing, [L8]]
Pilz GmbH and Company, -
PLCs
automating rocesses,ﬂ
capabilities,
communicating between,
conceptual view,

CPUs (central processing units), E

downtime,

dust and dirt,

enclosure fans,

Ethernet communication modules,
history of,

IEC 61131-3 international standard, [
input, B] [CJ4 [

ladder logic, I
maintenance,
memory, |
modular, p4l(
output, P]
PACs (Programmable Automation

Controllers),

programming languages

replacing components,

replacing hardwired relays, E

run mode,

safety-rated,

similarities with personal computers, E

wiring devices, Ep
pneumatic cylinders and sensors,
PNP sensors,
point to multipoint wireless networks, @
polarizing photosensms 119
polarizing reflector,
poor maintenance procedures, B43

positioning, incremental and absolute,
323

positive output, @

positively guided contacts B69
potential safety hazards. B4
power interlocking, B664B367
power line disturbances, P97
power rails,

power supply,

PRE (preset) value q.
PRE timers t member
precedenLe

predefined structurcq B
pressure sensors, 132] 149 .
process sensors and transmitters, m
processes
controlling, 75189
moving standald deviation, @
sequential, [19(]
produced-type tags, BJ
producer/consumer technology, E
products, monitoring size, @V
PROG position, ﬂ
ProgOperReq input, P77
ProgProgReq input, P77
program flow instructions,
program mode,
program scope tags,
rograminin
P aéjdltlonal imuaes for, .99 -
circular path, p21 h
function block routines,
ladder logic,
masks,
selection branches, P52-53
simultaneous branches, P504p51]
programming languages, [/ [L9Y
programs, ﬁ
controlling execution sequence, E

documenting with comments, D04
documenting with tag names, P4
jumping between areas in

jumping to subroutine,

routines, P11

Project Exflorer window,

projects
configuring modules, E
prog_,rdms
routines, §
ST programs, m
tasks, @

Properties command, @
pullback devices, @
PV (process Variuble),

Q
Qbit,
quadrature encoders,

R

racks. See chassis
RAD (Degrees to radians) function,
RAD instruction,

radians, converting deg.,rees to and from, .
radio frequency noise, B99

ramping and ana.lo output signal, [L10 m
rate limiting,

REAL control variable,

REAL-type tag,

real value, truncating,
real-world I/O addressing

Reference bit, [L73
reflective fiber-optic sensors,
reflective sensors,
relational instructions
CMP (Lompdre mstructlon 1614169
EQU (equal to) instruction,
GEQ (greater than or equal to)
instruction,
GRT (greater than) instruction.
LES (less than) 1nstructlon
LIM (limit) instruction,
NEQ (not equal to iustruction, @
relational operators,
relay outputs, |1
relays DI B714374
REM position, [
remainder,
remote analog output modules,
remote chassis
containing I/O module B4
Ethernet module, P
remote input modules, DO-J10d
remote mode,
remote output modules,
renaming tasks,
REPEAT UNTIL statements,
RES (reset) instruction, |74

reset switch 354

resistors,
resolution,

INDEX 511

axis,
encoders,
incremental encoders,
restraint devices, B64
retentive instructions,
retentive output instructions, @
retentive timers,
retraining and lockout/tagout standard
retro-reflective fiber-optic sensors,
retro-reflective sensors, [IE

RFID (Radio Frequency Identification)
Sensors, 13]

risk assessment
ANSI/RIA-1999. “Industrial Robots and
Robot Systems” standard,
categories,
EN 954-1 safety standards, 514353
EN ISO 13849-1 safety standards, B51]
354
TEC/EN 62061 standards, 35
machine limits, B5(}
necessary safety level,
standards, 44
task-based, p49
Risk Assessment and Risk Reduction-A
Guide to Estimate, Evaluate and
Reduce Risks Associated with Machine
Tools,
risk assessment fundamentals,
risk classification,
risk estimation analysis, 354
risk estimation example, B47344
risk reduction,
EN ISO 12100 standard,
information on residual risks,
safe design B354
strategies, 357
task-based, p47
technical protective measures,
robot gripper, B84
robot kinematics, ﬂ
robots, controlling, B EE
Rockwell Automation,
DF1 protocol,
explicit messaging,
input module wiring,
Logix family of controllers,
subroutine instructions,

rolling time stamp,

routines,
executing,
function block 1n§truct10
interrupting execution,
looping VTR

multiple sheets for, P

program tags,

programming for function blocks, D74
RPI (Requested Packet Interval)

parameter,

RS232,
RS-232, Z94£95
RS-422, 94493
RS-423, P94-P93
RS-485, P95494
RSLogix 5000

organizing tags, E
toolbar, é
RTBs (Removable Terminal Blocks),
[4]Fd
RTDs (resistive temperature devices), JL39
RTO (retentive-timer-on) instruction, [f§
RTOR instruction,
RTS (Real Time Sample) parameter, E
run mode, pO}
RUN position,
RUN status LED, f]
rungs
dlqabhng @
jumping over multiple,

output instructions in series,

S
S-curve profile 332
S-type action, P44
safe design, B554B56
safeguarding methods,
control and interface requirements,
guards, B62-{363
location, P63
safety
ANSI B11 2008 safety standard,
applications and sensors, [L13
considerations, 61
control reliability, BS14383
costs, P43
design, 6]
determining necessary level. B50-J354
E-stop pushbuttons, 369
ESPE (electrosensitive protective equip-
ment standau ds, @
aten
IEC 61496 mterndtlonal standard, B6]]
importance, B4
interlocking, 361 [66 567
safety relays, B714374
standards, B594B61|
two-hand switches, 369
safety bumper, B64
safety controllers, PS2-{384
safety controls,
safety devices

safety relays, B
llght curtain,
series mrcmt
two-hand control,
types,

safety standards, B5]]
safety switches, B73
safety trip controls, 364
safety trip wires, P64
scaling

analog modules 101}
modules, 1 1(]

scan mode routines,
Scan Modes configuration screen,
scan time,

scanning, E
SCL (scale) instruction, .
scope and tags,
Seedbeck, Thomas J., -
SEL (select) function block, B7q
selection branches, j
SelectorMode input, P77
self-adjusting guards. B624363
sensing range, |12
sensor offset,
sensors
analog, 115
choosing, E
color mark, || -
connected to mput module, ﬂ
diffuse,
discrete,
efector dualis,
electric mounting, [144
electronic,
external power supply, D
fiber-optic,
fiber-optic thru-beam,

flush, J124
inductive,

installation considerations,
laser,
laser distance,
line-powered,
linear output,
load-powered. |
mechanical,

negative output,
nonflush, [[29
nonshielded, [129

normally open or closed outputs,
NPN (Sinking Type),
optical,

output current limit, |
pneumatic cyhnders and 29
positive output [4]]
pressure, ﬁSl 149
reflective, [L15

response time, [[43
retro-reflective, JL14

RFID (Radio Frequency Identification),
131

safety applications,
shielded, 129
sinking, P2] [[40{]143
smart level, |1 44
sourcing, P2] [[40-f143
switching frequency,
temperature,
three-wire, [14(]

two-wire, P2
ultrasonic
wiring,
sequence of events and time-stamping, E
sequencer array,

512 INDEX

sequencer instructions

SOI (Sequencer Input) instructions,
1884194
SO

Sequencer Output) instruction,
187
sequencers, [19(]
sequential function chart, [I']
sequential processes 19(]
SERCOS I, 32.

SERCOS II, BO7]
SERCOS 111, B0
SERCOS (Serial Real-Time Communica-

tions System),
device standards, B0
drives,
fiber-optic connections,
motion control,
Motion Direct commands,
node addresses, p24
ring topology, 23
sequence for starting drive application,

serial communications

ASCII,
asynchronous, P93
R§-232, |
RS-422, p944p97
RS-423, 94493
synchronous, 9349

serial master-slave system (RS-232/485),

94

serial protocols POq

series logic, p0-Jp3

series output instructions, E

Servos, ﬂp

SFC (sequential function chart) program-

ming,

SFC (sequential function chart) programs
action tags, P5(]
actions, P2 D5 (]
adding elements, p5(]
comments,
concurrent ste%rocessing,

documenting,

ending,

heating application, P23
keeping outputs on, P44
looping back,

restarting after stop,

sample, 622122.1

selection branch, P26 P27 p52-p53
SFC_Routine, P44

simultaneous branch,
step and transition icon,

step tags, P5(

steps,

Stop element, P43

stop icon, P44

text boxes,

wiring steps, P24
SFR (SFC reset) instruction,
shielded sensors, [129413(
shift instructions, [L90J199

shift registers, 9]
Sick safety devices and controllers,
signal wiring,

signals improving noise immunity,
L0
SILs (safety integrity levels). B54

simultaneous branches, P53
SIN instructions, 164
SIN (Sine) function,
single»a)ds motion instructions,
single-axis motions, B33
single-axis of motion, 316
B 19
homing, B1
resolution of system,
single-channel gate switches,
single-ended inputs, |L0F
single-ended wiring, 125

single-integer (SINT)-type tag, P4
sinking input module, P04P3

sinking output modules, P5] E
sinking sensors 14.]
slave devices, P97
slot fillers, E
smart level sensors, [144
snubber,

solid-state outputs, |13
solid-state relays, B7]]

source addresses, [L63
sourcing input module, PO-JP3
sourcing output modules. P5-pd
sourcing sensors, 143
special photosensors, 129

SQI (Sequencer Input) instructions,
19
SQL (Sequencer Load) instruction, @

SQO (Sequencer Output) instruction,
187
SQR (square root) instruction,
SQRT (Square root) function, P04
SST (Spread Spectrum Technology), B0
SSV (set system values) instruction, [L94
ST (structured text), Iﬁ
benefits,
executing instructions or calling
subroutine, P34
ladder diagram, P83
overview, PO(]
programming fundamentals,
timers,
ST (structured text) programs
adding routine,
arithmetic operators, D0
assignment statement (z),
case insensitivity, PO
constructs, D13
ControlLogix projects, P04
entering code, PO
JSR instruction, P03
logic, p00Jp07
modulo instruction,
preplanning,
sentence-like structure,
step tags,
terminating with semicolon (;),

start bit,
Start contact, E
start/stop circuits, p4-Jp3
start switch,
statistical function blocks,
status bits
counters, [/
timers, 7
status LEDs, [] E
Step Properties dialog box, D44
Step Properties setup screen, BE
step tags. P34
steps, P44
AlarmHigh member,
concurrent (simultaneous) processing,

P25 P24

identifying,
keeping outputs on during multiple,
P44

length of time executing, P3(
linear sequence, Z‘
organizing execution
physical change, BE

PRE (preset time) value,
properties, P49
renaming, P29
selecting branching D]
tag members, D.3(]
turning devices off at end,
wiring (connecting), p24
Stop contact, p4
Stop element, P43
stop switch, E
strain gauges,
strings, comparing,

structure-type tag,
structures, B2| B3
sub devices, P9q

SUB function block,
SUB (subtract) instruction,
subroutine instructions, p2-4p3
subroutines

actions calling,

EOT (End of Transition),

exchanging data with, é

jumping to,

nesting,

storing sections of logic, @
Subtract (-) operator, P03
surge suppression, |
surge suppressors, B9
switch/marker method,
switches

Ethernet, B14

gate, P69

guard interlocking, B63]364

limit,

mechanical, [I3J14

normally closed or open, m

two-hand,
Symbol Technologies,
synchmnmls communications,
synchronous serial communications,
system clock,

INDEX 513

T

tag arrays, copying values between,
179
tag data types

alias-type tags, @
o
assigning dimensions E
base-type tags,
Boolean (BOOL)-type tag, .
double-integer(DINT)-type tag, B4
integer(INT)-type tag, é
REAL-type tag, B
single-integer (SINT)-type tag, P4
tag editor, @
tag members,
function blocks,
steps, E
tag names, 4

Tag ProEerties screen,

tagout,
tagout devices, 19
tags

adding values, P64
addressing, P3-J34

alternative name (alias),
assigning value to, P03
automatically created,
base-type, P51

case insensitivity,
configuring,

consumed-type,

controller scope,

creation,

data types, p29

diagnostic modules, B7-J34
editing,

function blocks
holding data, P5-P
/O module, B7439
input module, BY
memory allocation, E
monitoring,
motion function block, B2
physical address, P3-JP4
produced-type, B3
rogram scope, P4
?eall“rorld I/IE) addressing, @
scope,
structures, @
subtracting values, P67
symbolic names, P4
User-Defined structure, B
values,
TAN instructions,
TAN (Tangent) function,
Target Position Entry screen
task-based risk assessment, 343
task-based risk reduction,
Task Properties dialog box,
tasks, . B
risk estimation analysis, B504354
technical protective measures, 354
temperature, 133
temperature sensors
RTDs (resistive temperature devices), L34

thermistors, |L39

thermocouples, 139
temperatures

automated systems,

industrial environment,
test statement D1 (]
thermistors, [L39
thermocouple transmitter,
thermocouples

colorcoded for polarity and type,

34

resistors, JL3

types,
three-phase power,
three-wire sensors, [L4(]
thru-beam fiber-optic sensors,
thru-beam sensors,
time-of-flight measurement, B79
time-stamping inputs,
timers
ACC value, E
accumulating,
continuously running, @
controlling,)@ i
delaying actions, b4
DN (done) bits, 7]
EN (enable) bit, [/}
enabling,
function blocks,
misusing,
nonretentive P74
off-delay,
on-delay,
preset value /(]
renaming, P79
retentive, P74
RTO (retentive-timer-on) instruction,
ST (structured text),
status bits, [/ 147
tagname,
time base, p97(]
time delay, [/}
TOF (timer-off-delay) instruction, i
TON (Timer-On-Delay) instruction, [/(]
tracking elapsed time,
TT (timer-timing) bit,
TLL (transistor-transistor logic) output
modules,
TOD instruction,
TOF (timer-off-delay) instruction,
TOFR instruction,
token-passing bus network, P98-4P9g
tolerable risk,
TON (Timer-On-Delay) instruction, E
TONR instruction, ﬁ

TONR (timer) function block instruction,
P73
training and lockout/tagout standard,

transformers, B9
transistors, B7]]
transitions, D44
transmitted noise, p9Y
transmitters
process sensors and.
strain gauges and,

trapezoidal profile, B31339
tree-type structure, 04
trigonometric function blocks,
trigonometric instructions,
TRN (truncate) instruction,
troubleshooting,
analog input modules, mE
analog output modules, 104

CPUs (central processinif units),

discrete input modules,

discrete output modules,
example, 104
inputs chart, {04

logically isolating probable cause,

outputs chart
people skills
summary, {03
use of Web, §0
TRUNC (Truncate) function,
truncating, P79

trunk line, 303304

twisted pair wiring, P93
two-hand control and safety relays, @
two-hand safety switch

u

UL (Underwriters Laboratories), @
ultrasonic flow sensors,
unipolar modules,

unlatch instruction

up counters,
User Defined command, E
User-Defined structure tags,

\"

values
averaging,
changing sign, [156
comparing, D060
falling between two values, |L6(
greater than,
greater than or equal to,
inequality. J16]
less than, [16(}
moving,

square root, [L56

testing equality, [L59
VDE 0113 standard,
Via point,

w

warning areas,

watchdog time-out fault, @

watchdog timer,

WECA (Wireless Ethernet Compatibility
Alliance), P99

whole numbers,

Wi-Fi Alliance, P99

wireless communication, B0(]

wireless networks,

wiring

AC output module, @

514 INDEX

analog output mo

dule, [11]
automated systems, B84

CLX DC input modules, E

color,

DC output module E

DeviceNet, B03

[i]

differential, [LO6.

0]

function blocks,
high-speed-mode
input modules,
networks,

6.
10

output modules,
RTDs (resistive temperature devices), [L3§
Sensors,
single-ended, [L03
wiring (connecting) steps,
wiring harness, ﬁ
WLANS (wireless local area networks),

X
X axis,
556x processors, E

Xero,

XIC (examine-if-closed) contacts, E

XIO contacts,

XOR (Logical exclusive OR) operator, @

Y
Y axis,

yellow wire, B94

z
ZETo crossing,

	Front Cover
	Title Page
	Copyright
	Table of Contents
	Preface
	Acknowledgments
	CHAPTER 1 Introduction to Control Technology
	OBJECTIVES
	OVERVIEW
	HISTORY OF PLCS
	What is a PLC?
	Modular PLCs
	Input to a PLC
	Outputs from PLCs
	Programming

	SUMMARY

	CHAPTER 2 Memory and Project Organization
	OBJECTIVES
	INTRODUCTION
	CONTROLLOGIX PROJECTS
	Tasks
	Programs
	Routines

	LET’S REVIEW
	Project
	Task
	Program
	Routine

	TAG ADDRESSING IN CONTROLLOGIX
	Organizing Tags
	Base-Type Tags
	Alias-Type Tags
	Scope of Tags
	Creating a Tag
	Arrays
	Produced/Consumed Tags
	Structures
	User-Defined Structure Tags
	I/O Module Tags
	Number of Tasks
	Setting the Watchdog Time for a Task

	QUESTIONS

	CHAPTER 3 Ladder Logic Programming
	OBJECTIVES
	LADDER LOGIC
	Contacts
	Real-World Switches
	Coils
	Ladder Diagrams

	MULTIPLE CONTACTS
	Series Logic
	Parallel Logic

	START/STOP CIRCUITS
	USE OF OUTPUTS IN LOGIC
	Logic Examples
	Immediate Outputs
	One-Shot (ONS) Instructions
	Latching Instructions
	Output Latch (OTL) Instruction
	Output Unlatch (OTU) Instruction
	Program Flow Instructions
	Subroutine Instructions

	QUESTIONS

	CHAPTER 4 Timers and Counters
	OBJECTIVES
	TIMERS
	Preset
	Timer-On-Delay Instruction
	Timer Status Bits
	ACC Value Use
	Timer-Off-Delay (TOF) Instruction
	Retentive-Timer-On Instruction

	COUNTERS
	Count-Up (CTU) Counter
	Count-Down (CTD) Counters

	QUESTIONS

	CHAPTER 5 Input/Output Modules and Wiring
	OBJECTIVES
	I/O MODULES
	DIGITAL MODULES
	Digital Input Modules
	LED Status Information
	Keying Modules
	Electronic Keying
	Removable Terminal Blocks
	Time-stamping Inputs
	Rolling Time Stamp
	Input Wiring
	Sinking versus Sourcing Modules
	Discrete Output Modules
	Output Wiring
	Sinking versus Sourcing DC Outputs
	No-Load Detection
	High-Density I/O Modules
	Fusing of Digital Output Modules

	ANALOG INPUT MODULES
	Analog Module Timing Parameters
	Remote Input Modules Connected via EtherNet/IP
	Scaling
	Analog Resolution
	Field Calibration
	Sensor Offset
	Setting Alarms
	Single-Ended Inputs
	Differential Inputs
	High-Speed-Mode Differential Wiring Method
	Analog Data Format
	Analog Output Modules
	Remote Output Modules Connected via EtherNet/IP
	Output Resolution
	Scaling
	Integer Mode
	Differences between Integer and Floating-Point Modes
	Ramping/Rate Limiting
	Analog Output Module Wiring

	QUESTIONS

	CHAPTER 6 Industrial Sensors
	OBJECTIVES
	INTRODUCTION
	Mechanical Switches
	Electronic Sensing
	Optical Sensors
	Types of Optical Sensors
	Light/Dark Sensing
	Special Photosensors
	Incremental Encoders
	Absolute Encoders
	Field Sensors
	Mounting Field Sensors
	Radio Frequency Identification (RFID) Sensors
	Pressure Sensors
	Flow Sensors
	Temperature Sensors
	Sensor Wiring
	Sinking versus Sourcing
	Installation Considerations

	APPLICATIONS
	Considerations in the Choice of Sensors

	QUESTIONS

	CHAPTER 7 Math Instructions
	OBJECTIVES
	INTRODUCTION
	OPERATION INSTRUCTIONS
	Add (ADD) Instruction
	Subtract (SUB) Instruction
	Divide (DIV) Instruction
	Multiply (MUL) Instruction
	Average (AVE) Instruction
	Modulo (MOD) Instruction
	Negate (NEG) Instruction
	Square Root (SQR) Instruction
	Compute (CPT) Instruction

	RELATIONAL INSTRUCTIONS
	Equal To (EQU) Instruction
	Greater Than or Equal To (GEQ) Instruction
	Greater Than (GRT) Instruction
	Less Than (LES) Instruction
	Limit (LIM) Instruction
	Not Equal To (NEQ) Instruction
	Compare (CMP) Instruction

	LOGICAL INSTRUCTIONS
	AND Instruction
	NOT Instruction
	OR Instruction
	SIN Instruction

	MATH CONVERSION INSTRUCTIONS
	QUESTIONS

	CHAPTER 8 Special Instructions
	OBJECTIVES
	INTRODUCTION
	FILE INSTRUCTIONS
	Copy (COP) Instruction
	Move (MOV) Instruction
	Masked Move (MVM) Instruction
	File Fill (FLL) Instruction
	File Bit Comparison (FBC) and Diagnostic Detect (DDT) Instructions

	MESSAGE (MSG) INSTRUCTIONS
	PROPORTIONAL, INTEGRAL, DERIVATIVE (PID) INSTRUCTION
	PID Timing
	Derivative Smoothing
	Dead-Band Parameter
	Zero Crossing
	Output Limiting
	Feedforward or Output Biasing
	Cascading Loops

	SEQUENCERS
	Sequencer Instructions
	Sequencer Output (SQO) Instruction
	Sequencer Input (SQI)_Instruction
	Resetting the Position Value of an SQO Instruction
	Sequencer Load (SQL) Instruction

	SHIFT INSTRUCTIONS
	Bit Shift Left (BSL) Instruction
	File Shifts

	LOAD INSTRUCTIONS
	FIFO Load (FFL) instruction
	FIFO Unload (FFU) Instruction

	JUMP INSTRUCTIONS
	Jump-to-Subroutine (JSR) Instruction
	Jump (JMP) Instructions

	CONTROL INSTRUCTIONS
	Master Control Reset (MCR) Instruction
	Loop (FOR) Instruction
	Return (RET) Instruction
	Break (BRK) Instruction
	Get System Values (GSV) and Set System Values (SSV) Instructions
	EVENT Instruction

	QUESTIONS

	CHAPTER 9 Structured Text Programming
	OBJECTIVES
	INTRODUCTION
	OVERVIEW OF STRUCTURED TEXT
	FUNDAMENTALS OF ST PROGRAMMING
	PROGRAMMING ST IN CONTROLLOGIX
	Assignment Statements
	Documenting Logic with Comments

	ARITHMETIC OPERATORS
	Modulo Instruction

	ARITHMETIC FUNCTIONS
	RELATIONAL OPERATORS
	LOGICAL OPERATORS
	PRECEDENCE
	CONSTRUCTS
	ELSE IF (ELSIF) Statements
	FOR DO Statements
	WHILE DO Statement
	REPEAT UNTIL Statement
	CASE OF Statement

	TIMERS
	QUESTIONS

	CHAPTER 10 Sequential Function Chart (SFC) Programming
	OBJECTIVES
	INTRODUCTION
	SFC PROGRAMMING
	SAMPLE APPLICATION
	ORGANIZING THE EXECUTION OF THE STEPS
	Linear Sequence
	Wiring (Connecting) Steps
	Concurrent (Simultaneous) Processing
	Selection Branching

	STEPS
	Using the Preset Time of a Step
	Use of a Step’s Alarm Members
	Turning Devices Off at the End of a Step

	ACTIONS
	Action Tag Structure
	Non-Boolean Actions
	Boolean Actions
	The Order of Execution for Actions
	Using an Action to Call a Subroutine
	Qualifiers for Actions

	TRANSITIONS
	Keeping Outputs on During Multiple Steps
	Ending an SFC Program
	Restarting a SFC Progam after a Stop

	PROGRAMMING A SIMPLE SFC
	Adding Program Elements
	Programming a Simultaneous Branch
	Ending a Simultaneous Branch
	Programming a Selection Branch

	DOCUMENTATION OF SFC PROGRAMS
	QUESTIONS

	CHAPTER 11 Function Block Diagram Programming
	OBJECTIVES
	INTRODUCTION
	ADD Function Block
	Function Block Elements
	Order of Execution
	Feedback
	Connectors

	MATHEMATICAL FUNCTION BLOCKS
	ADD Function Block
	SUB Function Block
	MUL Function Block
	DIV Function Block
	Boolean AND (BAND) Function Block
	Boolean OR (BOR) Function Block

	TRIGONOMETRIC FUNCTION BLOCKS
	STATISTICAL FUNCTON BLOCKS
	Moving Average (MAVE) Instruction
	Initializing the Averaging Algorithm
	Minimum Capture (MINC) Instruction

	MATHEMATICAL CONVERSION FUNCTION BLOCK INSTRUCTIONS
	Scale (SCL) Instruction

	FUNCTION BLOCK TIMERS
	FUNCTION BLOCK COUNTERS
	PROGRAMMING FUNCTION BLOCK ROUTINES
	ADDITIONAL FUNCTION BLOCKS
	Select (SEL) Function Block

	PROGRAM/OPERATOR CONTROL OF FUNCTION BLOCKS
	Enhanced Select (ESEL) Function Block
	Switching between Program Control and Operator Control
	Multiplex (MUX) Instruction

	ADD-ON INSTRUCTIONS
	Developing an Add-On Instruction
	Parameters
	Local Tags
	Data Type
	Logic Routine
	Optional Scan Mode Routines
	Help
	Available Languages
	Creating an Add-On Instruction

	QUESTIONS

	CHAPTER 12 Industrial Communications
	OBJECTIVES
	INTRODUCTION
	SERIAL COMMUNICATIONS
	Synchronous Communications
	RS-232 Communications
	RS-422 and RS-423
	RS-485

	DF1 PROTOCOL
	MODBUS
	Address Field
	Function Code Field
	Data Field
	Error Check Field
	Message Formats for Modbus ASCII and RTU
	Modbus Plus

	DATA HIGHWAY PLUS
	Token Passing

	WIRELESS COMMUNICATION
	Peer to Peer
	Multipoint to Point
	Point to Multipoint
	Mesh
	Spread Spectrum Technology

	DEVICE-LEVEL NETWORKS
	Field Devices

	DEVICENET
	Strobed
	Polled
	Change of State
	Cyclic Transmission
	DeviceNet Components
	Wiring
	Troubleshooting

	CONTROL-LEVEL COMMUNICATIONS
	SERCOS
	ControlNet

	ENTERPRISE-LEVEL COMMUNICATIONS
	Ethernet

	QUESTIONS

	CHAPTER 13 Motion and Velocity Control
	OBJECTIVES
	INTRODUCTION
	CONTROLLOGIX CONTROLLER
	SINGLE-AXIS LOOP
	Ball Screw
	Homing
	Resolution of a System

	INCREMENTAL AND ABSOLUTE POSITIONING
	Understanding Interpolation
	Circular Interpolation

	CONTROLLOGIX MOTION CONTROL
	SERCOS
	Sequence for Starting a Drive Application
	Motion Direct Commands
	Programming Logic for Motion
	Motion Commands
	Jog Instructions
	Merge Disabled
	Coordinated Motion
	All Motion
	Motion Axis Move (MAM) Instruction
	Motion-Coordinated Linear Motion (MCLM) Instruction

	CIRCULAR INTERPOLATION
	USE OF CONTROLLOGIX TO CONTROL ROBOTS
	QUESTIONS

	CHAPTER 14 Risk Assessment and Safety
	OBJECTIVES
	THE IMPORTANCE AND COST OF SAFETY
	RISK ASSESSMENT FUNDAMENTALS
	Risk Assessment

	ANSI B11.TR3-2000
	Risk Estimation Example
	ANSI B11.TR3 Safeguarding

	EUROPEAN SAFETY STANDARDS, EN ISO 12100-1
	RISK ASSESSMENT
	Machine Limits
	Determining the Necessary Safety Level
	IEC/EN 62061

	RISK REDUCTION
	SUMMARY
	QUESTIONS

	CHAPTER 15 Safety Devices for Risk Reduction
	OBJECTIVES
	INTRODUCTION
	STANDARDS
	ANSI B11 2008
	Electrosensitive Protective Equipment (ESPE) Standards

	SAFETY CONSIDERATIONS
	SAFEGUARDING METHODS
	Guarding
	Safeguarding by Location

	SAFETY DEVICES
	Restraint Devices
	Pullback Devices
	Safety Trip Controls

	INTERLOCKING
	Power Interlocking
	Control Interlocking

	E-STOPS
	Series Connection of E-Stops

	TWO-HAND SWITCHES
	GATES AND GATE SWITCHES
	SAFETY RELAY
	THE USE OF OPTOELECTRONIC DEVICES FOR SAFEGUARDING
	Light Curtains
	Blanking
	Muting
	Input Monitoring
	Laser Scanners

	CONTROL AND INTERFACE REQUIREMENTS
	CONTROL RELIABILITY
	SAFETY CONTROLLER
	A Safety Controller Example

	SAFETY PLCS
	QUESTIONS

	CHAPTER 16 Installation and Troubleshooting
	OBJECTIVES
	INSTALLATION
	Documentation
	Fusing and Wiring
	Enclosures
	Disconnects
	Master Control Relay
	Transformers

	CODES
	NFPA 70 National Electrical Code
	NFPA 79: Electrical Standard for Industrial Machinery

	WIRING
	Wire Color
	General Wiring Suggestions

	GROUNDING
	Grounding Guidelines
	Ground versus Neutral

	ELECTRICAL NOISE
	Noise Isolation
	Noise Suppression

	PLC MAINTENANCE
	Keeping the System Operational

	TROUBLESHOOTING SYSTEM PROBLEMS
	People Skills in Troubleshooting
	Logically Isolate the Probable Cause
	Troubleshooting Input and Output Problems
	Troubleshooting Discrete Input Modules
	Troubleshooting Analog Input Modules
	Troubleshooting Discrete Output Modules
	Troubleshooting Analog Output Modules
	Troubleshooting CPU problems
	Review
	Troubleshooting Example

	POTENTIAL LOGIC PROBLEMS
	SUMMARY
	QUESTIONS

	CHAPTER 17 Lockout/Tagout
	OBJECTIVES
	INTRODUCTION
	LOCKOUT/TAGOUT
	Lockout
	Employee Notification
	Tagout
	Training
	Retraining
	Lockout/Tagout Device Requirements
	Application of Lockout/Tagout Procedures
	To Remove Lockout/Tagout Devices
	Testing of Machines, Equipment, or Components
	Group Lockout/Tagout
	Personnel or Shift Changes

	LOCKOUT PROCEDURE FOR THE EXTRUDER
	Purpose of the Procedure
	Employee Compliance
	Lockout Sequence for the Extruder

	RETURNING THE MACHINE OR EQUIPMENT TO SERVICE
	EXAMPLE OF A LOCKOUT/TAGOUT CHECKLIST
	OUTSIDE PERSONNEL WORKING WITHIN THE FACILITY
	QUESTIONS
	THE PRODUCED TAG
	THE CONSUMED TAG
	CREATE REMOTE TAGS
	SETTING UP THE CLX CONTROLLER FOR MESSAGING
	MESSAGE COMMAND AND LOGIC
	CREATING THE TAG IN THE CONTROLLER
	MSG LOGIC
	RESOLUTION OF THE AXES
	MOTION DIRECT COMMANDS

	APPENDIX A Starting a New Project in ControlLogix
	APPENDIX B Configuring I/O Modules in a Remote Chassis
	APPENDIX C The Use of Producer/Consumer Tags
	APPENDIX D ControlLogix Messaging
	APPENDIX E Configuring ControlLogix for Motion
	Glossary
	Index

